Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T06:40:37.832Z Has data issue: false hasContentIssue false

Clays in paleoweathering processes: study of a typical weathering profile in the Hercynian basement in the Montes de Toledo (Spain)

Published online by Cambridge University Press:  09 July 2018

M. A. Vicente
Affiliation:
Instituto de Recursos Naturales y Agrobiologíca, CSIC, Apdo. 257, Salamanca
E. Molina
Affiliation:
Dpto. de Geología, Facultad de Ciencias, Salamanca
R. Espejo
Affiliation:
Dpto. Edafología, ETSI Agrónomos , C. Universitaria, 28040-Madrid, Spain

Abstract

A series of weathered Paleozoic slates was studied in an area southwest of the Montes de Toledo mountain range where the weathered slates are overlain by a raña formation and show three weathering levels. The fresh slate (at 30 m depth) is composed of ferrous chlorite, mica, quartz and feldspars. In the lowest part of the weathering profile the ferrous chlorite begins to evolve to smectite, and in the intermediate level, all the chlorite has been transformed into smectite. In the upper level (in contact with the raña formation), the smectites evolve to kaolinite, and the micas, which are unaffected at greater depths, begin to evolve to vermiculite, and there has been segregation of the free iron oxyhydroxides producing red, ochre and white zones. Two principal weathering processes, separated in time but superimposed, have been identified.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1115 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Espejo, R. (1986) Procesos edafogénesicos y edad de las formaciones de "raña" relacionadas con las estribaciones meridionales de los Montes de Toledo. An. Edafol. Agrobioi XLV, 655680.Google Scholar
Espejo, R. (1987) The soils and ages of the "raña" surfaces related to the Villuercas and Ahamira mountain ranges (Western Spain). Catena 14, 399418.CrossRefGoogle Scholar
Garcia, J. & Saavedra, J. (1983) Datos analíticos sobre cuatro patrones geoqufmicos de Salamanca (granitos, s.l.) y tecnicas utilizadas. Anuario CEBAS 9, 321332.Google Scholar
IGME (1970) Instituto Geologico y Minero de Espana. Mapa geológico de Espana a escala 1:200.000. Hoja no 52: Talavera de la Reina. Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Molina, E. & Blanco, J.A. (1980) Quelques precisions sur Talteration du Massif Hercynien espagnol. C.R. Acad. Sci.r Paris, 290, 12931296.Google Scholar
Pal, D.K., Deshpande, S.B., Venugopal, K.R. & Kalbande, A.F. (1989) Formation of di- and trioctahedral smectite as evidence for paleoclimatic changes in southern and central peninsular India. Geoderma 45, 175184.Google Scholar
Sole Sabaris, L. & Llopis Llado, N. (1952) Peninsula Iberica. Geografla Fisica/, Ed. Mountaner y Simón, S.A., Barcelona, 549 pp.Google Scholar
Vicente, A., Molina, E. & Garcia Rodriguez, P. (1987) Sequence of the processes ofgeochemicaJ weatheringin the northern piedmont of the Central System (Salamanca, Spain). Summaries–Proc. 6th Meet. European Clay Groups, Sevilla, 564566.Google Scholar
Vicente, A., Molina, E., Robert, M. & Jaunet, A.M. (1989) EM studies of mica and chlorite weathering to kaolinite in slates. Abstracts 9th Int. Clay Conf., Strasbourg, 417.Google Scholar