Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:14:17.808Z Has data issue: false hasContentIssue false

Clay minerals as provenance indicators in continental lacustrine sequences: the Leza Formation, early Cretaceous, Cameros Basin, northern Spain

Published online by Cambridge University Press:  09 July 2018

J. Alonso-Azcárate*
Affiliation:
Facultad de Ciencias del Medio Ambiente, Fábrica de Armas, Universidad de Castilla-La Mancha, 45071 Toledo
M. Rodas
Affiliation:
Facultad de Ciencias Geológicas, Departamento de Cristalografía y Mineralogía. Universidad Complutense de Madrid, 28040 Madrid
J. F. Barrenechea
Affiliation:
Facultad de Ciencias Geológicas, Departamento de Cristalografía y Mineralogía. Universidad Complutense de Madrid, 28040 Madrid
J. R. Mas
Affiliation:
Facultad de Ciencias Geológicas, Departamento de Estratigrafía, Universidad Complutense de Madrid, Instituto de Geología Económica, C.S.I.C., 28040 Madrid, Spain
*

Abstract

Variations in clay mineral assemblages, changes in Kübler index (KI), and the chemical composition of chlorites are used to identify source areas in the lacustrine materials in the Lower Cretaceous Leza Limestone Formation of the Cameros Basin, northern Spain. This formation has fairly homogeneous lithological characteristics and facies associations which do not allow for identification and characterization of local source areas. The Arnedillo lithosome of the Leza Limestone Formation contains a clay mineral association (Mg-chlorite, illite and smectite) indicative of its provenance. Chlorite composition and illite KI values indicate that these minerals were formed at temperatures higher than those reached by the Leza Formation which indicates its detrital origin. The similarity in the Mg-chlorite composition between the Arnedillo lithosome and the Keuper sediments of the area indicates that these materials acted as a local source area. This implies that Triassic sediments were exposed, at least locally, at the time of deposition of the Leza Formation. The presence of smectite in the Leza Formation is related to a retrograde diagenesis event that altered the Mg-chlorites in some samples.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A. & Mas, J.R. (1993) Control tectonicó e influencia del eustatismo en la sedimentatión del Cretácico inferior de la Cuenca de Los Cameros. España. Cuadernos de Geología Iberica, 17, 285310.Google Scholar
Alonso-Azcárate, J. (1997) Evolutión de los filosilicatos y génesis de los yacimientos depirita en la cuenca de Cameros: su relatión con las facies sedimentarias y el metamorfismo. PhD thesis, Universidad Complutense de Madrid, Spain, 544 pp.Google Scholar
Alonso-Azcárate, J., Barrenechea, J.F., Rodas, M. & Mas, J.R. (1995) Comparative study of the transition between very low-grade and low-grade metamorphism in siliciclastic and carbonate sediments: Early Cretaceous, Cameros Basin (Northern Spain). Clay Minerals, 30, 407419.CrossRefGoogle Scholar
Alonso-Azcárate, J., Arche, A., Barrenechea, J.F., López-Gomez, J., Luque, F.J. & Rodas, M. (1997) Palaeogeographical significance of clay mineral assemblages in the Permian and Triassic sediments of the SE Iberian Ranges, eastern Spain. Palaeo geography, Palaeo climatology, Palaeoecology, 136, 309-330.Google Scholar
Alonso-Azcárate, J., Rodas, M., Bottrell, S.H., Raiswell, R., Velasco, F. & Mas, J.R. (1999a) The pyrite deposits of the Cameros Basin, Spain: evidence for channelling of peak metamorphic fluid flow through sandtone aquifers. Journal of Metamorphic Geology, 17, 339348.CrossRefGoogle Scholar
Alonso-Azcárate, J., Boyce, A.J., Bottrell, S.H., Macaulay, C.I., Rodas, M., Fallick, A.E. & Mas, J.R. (1999b) Development and use of in situ laser sulfur isotope analyses for pyrite-anhydrite geothermometry: An example from the pyrite deposits of the Cameros Basin, NE Spain. Geochimica et Cosmochimica Ada, 63, 509513.CrossRefGoogle Scholar
Alonso-Azcárate, J., Rodas, M., Barrenechea, J.F. & Mas, J.R. (1999c) Factores que controlan la evolutión de los párametros cristaloquímicos y asociaciones minerales en las rocas sedimentarias del grupo Enciso (Cretácico inferior). Cuenca de Cameros, La Ríoja (norte de España). Revista de la Sociedad Geologica de España, 12, 439451.Google Scholar
Barrenechea, J.F., Rodas, M. & Mas, J.R. (1995) Clay mineral variation associated with diagenesis and low-grade metamorphism of Early Cretaceous sediments in the Cameros basin, Spain. Clay Minerals, 30, 119133.CrossRefGoogle Scholar
Barrenechea, J.F., Rodas, M., Frey, M., Alonso-Azcárate, J. & Mas, J.R. (2000) Chlorite, corrensite, and chlorite-mica in late Jurassic fluvio-lacustrine sediments of the Cameros basin of northeastern Spain. Clays and Clay Minerals, 48, 256265.CrossRefGoogle Scholar
Blatt, H. (1985) Provenance studies and mudrocks. Journal of Sedimentary Petrology, 55, 69–75.Google Scholar
Bodine, M.W. Jr. & Madsen, B.M. (1987) Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah. Pp. 85-93 in: Proceedings of the International Clay Conference, vol. 8. The Clay Minerals Society, Boulder, Colorado.Google Scholar
Casas-Sainz, A.M. & Gil-Imaz, A. (1998) Extensional subsidence, contractional folding and thrust inversion of the Eastern Cameros Massif, northern Spain. Geologische Rundschau,, 86, 802818.CrossRefGoogle Scholar
Casquet, C., Galindo, C., González Casado, J.M., Alonso, A., Mas, R., Rodas, M., García, E. & Barrenechea, J.F. (1992) El metamorfismo en la Cuenca de los Cameros. Geocronologcía e implicaciones tectcónicas. Geogaceta, 11, 22-25.Google Scholar
Cavalcante, F., Fiore, S., Piccarreta, G. & Tateo, F. (2003) Geochemical and mineralogical approaches to assessing provenance and deposition of shales; a case study. Clay Minerals, 38, 383397.CrossRefGoogle Scholar
Dilli, K. & Pant, R.K. (1994) Clay minerals as indicators of the provenance and palaeoclimatic record of the Kashmir Loess. Journal of the Geological Society of India, 44, 563574.Google Scholar
Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry — a critical perspective. Clays and Clay Minerals, 43, 540553.CrossRefGoogle Scholar
Guimercá, J., Alonso, A. & Mas, J. R. (1995) Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros basin (N. Spain). Pp. 433-453 in: Basin Inversion (Buchanan, J.C. and Buchanan, P., editors). Special Publication, 88. Geological Society of London.Google Scholar
Hillier, S. (1993) Origin, diagenesis and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 240259.CrossRefGoogle Scholar
Hillier, S. & Clayton, T. (1989) Illite/smectite diagenesis in Devonian lacustrine mudrocks from northern Scotland and its relationship to organic maturity indicators. Clay Minerals, 24, 181196.CrossRefGoogle Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 26, 149–168.CrossRefGoogle Scholar
Jarosewich, E., Nelen, J.A. & Norberg, A. (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter, 4, 43–47.CrossRefGoogle Scholar
Kübler, B. (1967) La cristallinitcé de l'illite et les zones tout à fait supcérieures du mcétamorphisme. Etages Techtoniques. Coll Neuchâtel, 105-122.Google Scholar
Kübler, B. (1968) Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bulletin de Centre Recherche, Pau SNPA, 2, 385397.Google Scholar
Lucas, J. & Ataman, G. (1968) Mineralogical and geochemical study of clay mineral transformations in the sedimentary Triassic Jura basin (France). Clays and Clay Minerals, 16, 365-372.CrossRefGoogle Scholar
Mas, J.R., Alonso, A. & Díaz, E. (1990) Tectonically controlled carbonate lacustrine systems in the northern margin of the Cameros Basin (Lower Cretaceous, North Spain). P. 55 in: 6th Meeting of the European Geological Societies, Lisbon.Google Scholar
Mas, J.R., Alonso, A. & Guimerá, J. (1993) Evolutión tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijurásica-eocretácica de Los Cameros (La Ríoja-Soria). Revista de la Sociedad Geológica de España, 6, 129–144.Google Scholar
Mas, J.R., Benito, M.I., Arribas, J., Serrano, A., Guimera, J., Alonso, A. & Alonso-Azcárate, J. (2003) The Cameros Basin: From Late Jurassic-Early Cretaceous Extension to Tertiary Contractional Inversion-Implications of Hydrocarbon Exploration. Northwest Iberian Chain, North Spain. P. 56 in: Geological Field Trip 11. AAPG International Conference and Exhibition; Barcelona, Spain. Centre Recherches, Elf-Total-Fina.Google Scholar
Mata, M.P., Casas, A.M., Canals, A., Gil, A. & Pocovi, A. (2001) Thermal history during Mesozoic extension and Tertiary uplift in the Cameros Basin, northern Spain. Basin Research, 13, 91111.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edition, p. 332. Oxford University Press, New York.Google Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega Huertas, M. (1994) Regional retrograde alteration of sub-greenschist fades chlorite to smectite. Contributions to Mineralogy and Petrology, 115, 243-252.CrossRefGoogle Scholar
Rao, V.P. & Rao, B.R. (1995) Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India. Continental Shelf Research, 15, 1757-1771.Google Scholar
Reynolds, R.C. Jr. (1980) Interstratified clay minerals. Pp. 335-380 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Salas, R. & Casas, A. (1993) Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228, 33–35.CrossRefGoogle Scholar
Saleemi, A.A. & Ahmed, Z. (2000) Mineral and chemical composition of Karak Mudstones, Kohat Plateau, Pakistan; implications for smectite-illitization and provenance. Sedimentary Geology, 130, 229-247.CrossRefGoogle Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierce-Shale. US Geological Survey Profesional Paper, 391-C.CrossRefGoogle Scholar
Šucha, V., Kraus, I., Gerthofferova, H., Petes, S. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the east Slovak basin. Clay Minerals, 28, 243253.CrossRefGoogle Scholar
Underwood, M.B. & Pickering, K.T. (1996) Clay-mineral provenance, sediment dispersal patterns, and mudrock diagenesis in the Nankai accretionary prism, Southwest Japan. Clays and Clay Minerals, 44, 339356.CrossRefGoogle Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141–152.CrossRefGoogle Scholar
Wiewiora, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: U. The chlorite group. Clay Minerals, 25, 8392.CrossRefGoogle Scholar
Zane, A., Sassi, R. & Guidotti, C.V. (1998) New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. The Canadian Mineralogist, 36, 713726.Google Scholar
Zhao, G., Peacor, D.R. & McDowell, S.D. (1999) ‘Retrograde diagenesis’ of clay minerals in the Precambrian Freda Sandstone, Wisconsin. Clays and Clay Minerals, 47, 119130.Google Scholar