Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T16:11:09.474Z Has data issue: false hasContentIssue false

Clay intercalated Cu(II) amino acid complexes: synthesis, spectroscopy and catalysis

Published online by Cambridge University Press:  09 July 2018

L. Fu
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Departement Interfasechemie, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee (Leuven), Belgium
B. M. Weckhuysen
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Departement Interfasechemie, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee (Leuven), Belgium
A. A. Verberckmoes
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Departement Interfasechemie, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee (Leuven), Belgium
R. A. Schoonheydt
Affiliation:
Centrum voor Oppervlaktechemie en Katalyse, Departement Interfasechemie, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee (Leuven), Belgium

Abstract

Complexes of Cu(lysine)2+2 and Cu(histidine)2+2 have been intercalated between the layers of saponite clays by a simple cation exchange procedure from aqueous solutions of preformed Cu(amino acid)2-complexes. Successful immobilization was obtained with an amino acid: Cu2+ ratio of 5, and a pH of 10 and 7.3 for lysine and histidine, respectively. The synthesized materials were investigated as powders and as thin films by electron spin resonance (ESR), diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The light blue clays are characterized by an axially symmetric ESR spectrum with A//= 192 G, g//= 2.23 and g = 2.07, and a d-d absorption band around 600 nm, due to the intercalated planar Cu2+-complexes. Ammonia interacts reversibly with these intercalated complexes, suggesting the presence of a free coordination site. The novel synthesized materials are active in various oxidation reactions with t-butyl hydroperoxide as oxidant.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. & Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Metal Ions. Clarendon Press, Oxford.Google Scholar
Chhabra, R., Pleysier, J. & Cremers, A. (1975) The measurement of the cation exchange capacity and exchangeable cations in soils: a new method. Proc. Int. Clay Conf. Mexico, 439-449.Google Scholar
Cremers, A. & Plevsmr, J. (1973) Adsorption of the silver-thiourea complex in montmorillonite. Nature Phys. Sci. 244, 8687.Google Scholar
Flsher, B.E. & Smel, H. (1980) Ternary complexes in solution. 35. Intramolecular hydrophobic ligandligand interactions in mixed ligand complexes containing an aliphatic amino acid. J. Am. Chem. Soc. 102, 29983008.Google Scholar
Lever, A.B.P. (1984) Inorganic Electron Spectroscopy. Elsevier, 2nd edition, Amsterdam.Google Scholar
Maes, A. & Cremers, A. (1978) The stability of metal uncharged ligand complexes in ion exchangers. Part 3. Complex ion selectivity and stepwise stability constants. J. Chem. Soc., Faraday Trans. I, 74, 24702480.Google Scholar
Maes, A., Marynen, P. & Cremeas, A. (1977) Stability of metal uncharged ligand complexes in ion exchangers. Part 1. Quantitative characterization and thermodynamic basis. J. Chem. Soc., Faraday Trans. I,73, 12971301.CrossRefGoogle Scholar
Maes, A., Peigneur, P. & Cremers, A. (1978) Stability of metal uncharged ligand complexes in ion exchangers. Part 2. The copper-ethylenediamine complex in montmorillonite and sulphonic acid resin. J. Chem. Soc., Faraday Trans. I, 74, 131135.Google Scholar
Maes, A., Schoonheydt, R.A., Cremers, A. & Uvtterhoeven, J.B. (1980) Spectroscopy of Cu(en)2 2+ on clay surfaces: surface and charge density effects. J. Phys. Chem. 84, 27952799.Google Scholar
Pilbrow, J.R. (1990) Transition Ion Electron Paramagnetic Resonance. Clarendon Press, Oxford. Google Scholar
Schoonheydt, R.A., Velghe, F. & Uytterhoeven, J.B. (1979a) Characterization of Ni(en)2+ x (x = 1,2,3; en = ethylenediamine) on the surface of montmorillonites. Inorg. Chem. 18, 18421847.Google Scholar
Schoonheydt, R.A., Velghe, F., Baerts, R. & Uytterhoeven, J.B. (1979b) Complexes of diethylenetriamine (dien) and tetraethylenepentamine (tetren) with Cu(II) and Ni(II) on hectorite. Clays Clay Miner. 27, 269278.Google Scholar
Sigel, H. & Cormick, D.B. (1971) The structure of the copper(II)-L-histidine 1:2 complex in solution. J. Am. Chem. Soc. 93, 20412044.CrossRefGoogle Scholar
Theng, B.K.K. (1974) The Chemistry of Clay-Organic Reactions. Pp. 158-186. A. Hilger, London.Google Scholar
Velghe, F., Schoonheydt, R.A., Uytterhoeven, J.B., Peigneur, P. & Lunsford, J.H. (1977) Spectroscopic characterization and thermal stability of Copper(II) ethylene-diamine complexes on solid surfaces 2. Montmorillonite. J. Phys. Chem. 81, 11871194.Google Scholar
Weckhuysen, B.M., De Ridder, L.M. & Schoonheydt, R.A. (1993) A quantitative diffuse reflectance spectroscopy study of supported chromium oxide catalysts. J. Phys. Chem. 97, 47564763.Google Scholar
Weckhuysen, B.M., Verberckmoes, A.A., Vannijvel, I.P., Pelgrims, J.A., Buskens, P.L., Jacobs, P.A. & Schoonheydt, R.A. (1995) Zeolite encaged Cu(histidine) complexes as mimics of natural Cu enzymes. Angew. Chem. Int. Ed. Engl. 34, 26522654.CrossRefGoogle Scholar
Weckhuysen, B.M., Verberckmoes, A.A., Fu, L. & Schoonheydt, R.A. (1996) Zeolite encapsulated copper(II)amino acid complexes : synthesis, spectroscopy and catalysis. J. Phys. Chem. 100, 94569461.Google Scholar
Williams, D.R. (1971) The Metals of Life: the Solution Chemistry of Metal Ions in Biological Systems. Van Nostrand Reinhold Company, London.Google Scholar
Wmson, E.W., Kasperian, M.H. & Martin, R.B. (1970) Binding of copper(lI) to potentially tridentate amino acid ligands. J. Am. Chem. Soc. 92, 53655372.Google Scholar
Yamauchi, O., Sakurai, T. & Nakahara, A. (1979) Histidine-containing ternary amino acid-copper(II) complexes, syntheses and properties. J. Am. Chem. Soc, 101, 41644172.Google Scholar