Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T13:58:50.543Z Has data issue: false hasContentIssue false

Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany

Published online by Cambridge University Press:  09 July 2018

S. Petit*
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
J . Caillaud
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
D. Righi
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
J . Madejová
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, 842 36 Bratislava, Slovakia
F. Elsass
Affiliation:
Unité de Science du Sol, INRA, 78026 Versailles Cedex, France
H. M. Köster
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
*

Abstract

An Fe-rich smectite from Ölberg (Germany) was characterized using X-ray diffraction, infrared spectroscopy and analytical electron microscopy. Progressive reduction of the octahedral charge was performed through the Hofmann & Klemen effect at increasing temperatures. The sample was heterogeneous, consisting of two smectite populations. One population, which comprises a minor portion of the sample, is an ‘Fe3+-montmorillonite’ with little or no tetrahedral charge and Fe3+ as the major octahedral cation. The other population, a major constituent of the sample, contains less Mg and more Al than the first one and exhibits some tetrahedral charge. This fraction may be considered as an inter-grade between nontronite (dominant tetrahedral charge) and Fe3+-montmorillonite (dominant octahedral charge). These two populations may occur as separate particles but also as interstratified layers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, W. (1938) Geologische Untersuchungen über die Basalte des Westerwaldes. Zeitschrift der Deutschen Geologischen Gesellschaft, 90, 381383.Google Scholar
Ahrens, W. (1960) Die Lagerstätten nutzbarer Steine und Erden im Westerwald. Zeitschrift der Deutschen Geologischen Gesellschaft, 112, 238253.CrossRefGoogle Scholar
Bain, D.C. & Smith, B.F.L. (1994) Chemical analysis. Pp. 300332 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177186.Google Scholar
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125195 in: Crystal structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays and Clay Minerals, 19, 175186.CrossRefGoogle Scholar
Čičel, B. & Komadel, P. (1994) Structural formulae of layer silicates. Pp. 114136 in: Quantitativ e Methods in Soil Mineralogy. (Amonette, J.E. & Zelazny, L.W., editors). Soil Science Society of America Miscellaneous Publication, Madison, WI, USA.Google Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 5359.Google Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1994) The nontronite-saponite series: an experimental approach. European Journal of Mineralogy, 6, 99112.Google Scholar
Güven, N. (1988) Smectites. Pp. 497559 in. Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Hawthorne, F.C. & Waychunas, G.A. (1988) Spectrumfitting methods. Pp. 6398 in. Spectroscopic Methods in Mineralogy and Geology (Hawthorne, F.C., editor). Reviews in Mineralogy, 18. Mineralogical Society of America, Washington D.C.Google Scholar
Heilman, M.D., Carter, D.L. & Gonzalez, C.L. (1965) The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area. Soil Science, 100, 409413.CrossRefGoogle Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiuminonen an Bentonit durch Erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262, 9599.CrossRefGoogle Scholar
Köster, H.M. (1960) Nontronit und Picotit aus dem Basalt des O¨ lberges bei Hundsangen, Westerwald. Beiträge zur Mineralogie und Petrographie, 7, 7175.Google Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579599.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 146 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (Mermut, A.R., editor). CMS Workshop Lectures, 6. The Clay Minerals Society, Boulder, CO, USA.Google Scholar
Lanson, B. (1993) DECOMPXR, X-ray Decomposition Program. ERM, Poitiers, France.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132146.Google Scholar
Madejová, J., Bujdák, J., Gates, W.P. & Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li content. Clay Minerals, 31, 233241.Google Scholar
Madejová, J., Bujdák, J., Petit, S. & Komadel, P. (2000a) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region. Clay Minerals, 35, 739751.Google Scholar
Madejová, J., Bujdák, J., Petit, S. & Komadel, P. (2000b) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. Part (II) Near-infrared region. Clay Minerals, 35, 753761.Google Scholar
Malla, P.B. & Douglas, L.A. (1987) Identification of expanding layer silicates: layer charge vs. expansion properties. Proceedings of the International Clay Conference, Denver, 1985, 227283.Google Scholar
Olis, A.C., Malla, P.B. & Douglas, L.A. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 3950.Google Scholar
Petit, S., Righi, D., Madejová, J. & Decarreau, A. (1998) Layer charge estimation of smectites using infrared spectroscopy. Clay Minerals, 33, 579591.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillon ite group. US Geological Survey Professional Paper, 205-B, 179.Google Scholar
Sposito, G. (1984) Pp. 2325 in: The Surface Chemistry of Soils. Oxford University Press, New York.Google Scholar
STATISTIX (1998) Analytical Software. P.O. Box 12185, Tallahassee, FL, USA.Google Scholar
Warren, E.A. & Ransom, B. (1992) The influence of analytical error upon the interpretation of chemical variations in clay minerals. Clay Minerals, 27, 193209.Google Scholar