Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T01:33:30.549Z Has data issue: false hasContentIssue false

Chamosite, a naturally occurring clay as a versatile catalyst for various organic transformations

Published online by Cambridge University Press:  09 July 2018

R. Arundhathi
Affiliation:
Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (Council of Scientific and Industrial Research), Hyderabad-500007, India
B. Sreedhar*
Affiliation:
Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (Council of Scientific and Industrial Research), Hyderabad-500007, India
G. Parthasarathy
Affiliation:
National Geophysical Research Institute (Council of Scientific and Industrial Research), Hyderabad 500007, India
*

Abstract

The chlorite-group mineral chamosite occurs in nanocrystalline form (~200 nm grain size) as a naturally occurring clay in the Quaternary marine sedimentary deposits near Kudiamozhi, Tuticorin District, Tamil Nadu, India; samples were used in this study as a reusable catalyst. The clay has the usual alternating tetrahedral-octahedral-tetrahedral silicate/aluminate/silicate layer structural arrangement (sometimes called the 2:1 silicate or talc layer structure). The interlayer and the t-o-t layer are bound together by both electrostatic and hydrogen-bonding forces. This natural clay catalyst has been well characterized by various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD), temperature programmed desorption (TPD), thermal analysis and BET surface area measurements (Sreedhar et al., 2009); it has been utilized for various organic transformations such as acylation of alcohols and amines, cyclization of arylaldehydes with O-phenylenediamines and C-O bond formation reactions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M., & McCabe, R.W. (2006) Clay minerals as catalysts. Pp. 541581 in: Handbook of Clay Science, Developments in Clay Science Vol 1 (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Akçay, M. (2004) The catalytic acylation of alcohols with acetic acid by using Lewis acid character pillared clays. Applied Catalysis A: Chemical, 191, 157160.Google Scholar
Alleti, R., Perambuduru, M., Samantha, S. & Prakash Reddy, V. (2005a) Gadolinium triflate: an efficient and convenient catalyst for acetylation of alcohols. Journal of Molecular Catalysis A: Chemical, 226, 5759.Google Scholar
Alleti, R., Oh, W.S., Perambuduru, M., Afrasiabi, Z., Sinn, E. & Reddy, V.P. (2005b) Gadolinium triflate immobilized in imidazolium based ionic liquids: A recyclable catalyst and green solvent for acetylation of alcohols and amines. Green Chemistry, 7, 203206.Google Scholar
Ambulgekar, G.V., Bhanage, B.M. & Samant, S.D. (2005) Low-temperature recyclable catalyst for Heck reactions using ultrasound. Tetrahedron Letters, 46, 24832485.Google Scholar
Ballini, R., Bosica, G., Carloni, S., Ciralli, L., Maggi, R. & Sartori, G. (1998) Zeolite HSZ-360 as a new reusable catalyst for the direct acetylation of alcohols and phenols under solventless conditions. Tetrahedron Letters, 39, 60496052.Google Scholar
Benjamin, D.S. & Alois, F. (2008) The promise and challenge of iron-catalyzed cross coupling. Accounts of Chemical Research, 41, 15001511.Google Scholar
Benli, Z., Qiliang, Y. & Dawei, M. (2007) Synthesis of 1,2-disubstituted benzimidazoles by a Cu-catalyzed cascade aryl amination/condensation process. Angewandte Chemie, International Edition, 119, 26522655.Google Scholar
Bistri, O., Correa, A. & Bolm, C. (2008) Iron-catalyzed CO cross-couplings of phenols with aryl iodides. Angewandte Chemie, International Edition, 47, 586588.Google Scholar
Blankenstein, J. & Zhu, J. (1998) Conformation-directed macrocyclization reactions. European Journal of Organic Chemistry, 2005, 19491964.CrossRefGoogle Scholar
Brain, C.T. & Brunton, S.A. (2002) An intramolecular palladium-catalysed aryl amination reaction to produce benzimidazoles. Tetrahedron Letters, 43, 18931895.Google Scholar
Brindaban, C.R., Suvendu, S.D. & Alakananda, H. (2003) Highly efficient acylation of alcohols, amines and thiols under solvent-free and catalyst-free conditions. Green Chemistry, 5, 4446.Google Scholar
Burgos, C.H., Barder, T.E., Huang, X. & Buchwald, S.L. (2006) Significantly improved method for the Pdcatalyzed coupling of phenols with aryl halides: understanding ligand effects. Angewandte Chemie, International Edition, 45, 43214326.Google Scholar
Carey, J.S., Laffan, D., Thomson, C. & Williams, M.T. (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Organic and Biomolecular Chemistry, 4, 23372347.Google Scholar
Chakraborti, A.K. & Gulhane, R. (2003) Perchloric acid adsorbed on silica gel as a new, highly efficient, and versatile catalyst for acetylation of phenols, thiols, alcohols, and amines. Chemical Communications, 1896-1897.Google Scholar
Chan, D.M.T., Monaco, K.L., Wang, R.P. & Winters, M.P. (1998) New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Letters, 39, 29332936.Google Scholar
Chauhan, K.K., Frost, C.G., Love, I. & Waite, D. (1999) Indium triflate: an efficient catalyst for acylation reactions. Synlett, 1743-1744.Google Scholar
Choudary, B.M., Bhaskar, V., Kantam, M.X., Koteswara Rao, K. & Raghavan, K.V. (2000) Acylation of alcohols with carboxylic acids via the evolution of compatible acidic sites in montmorillonites. Green Chemistry, 2, 6770.CrossRefGoogle Scholar
Choudary, V.R., Jana, S.K. & Patil, N.S. (2001) Acylation of benzene over clay and mesoporous Si- MCM-41 supported InCl3, GaCl3 and ZnCl2 catalysts. Catalysis Letters, 76, 235239.Google Scholar
Choudary, V.R., Patil, K. & Jana, S.K. (2004) Acylation of aromatic alcohols and phenols over InCl3/ montmorillonite K-10 catalysts. Journal of Chemical Science, 116, 175177.CrossRefGoogle Scholar
Deng, H., Jung, J.K., Liu, T., Kevin, W.K., Marc, L.S. & Amir, H.H. (2003) Total synthesis of anti-HIV agent chloropeptin I. Journal of American Chemical Society, 125, 90329034.CrossRefGoogle ScholarPubMed
Deshmukh, R.R., Rajagopal, R. & Srinivasan, K.V. (2001) Ultrasound promoted C—C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. Chemical Communications, 1544-1545.Google Scholar
Dudd, L.M., Venardou, E., Garcia-Verdugo, E., Licence, P., Blake, A.J., Wilson, C. & Poliakoff, M. (2003) Synthesis of benzimidazoles in high-temperature water. Green Chemistry, 5, 187192.Google Scholar
Dudd, L.M., Venardou, E., Garcia-Verdugo, E., Licence, P., Blake, A.J., Wilson, C., Dabiri, M., Salehi, P., Baghbanzadeh, M. & Nikcheh, M.S. (2008) Wateraccelerated selective synthesis of 1,2-disubstituted benzimidazoles at room temperature catalyzed by Brnsted acidic ionic liquid. Synthetic Communications, 38, 42724281.Google Scholar
Evans, D.A., Katz, J.L. & West, T.R. (1998a) Synthesis of L-L-isodityrosine. Tetrahedron Letters, 30, 20532056.Google Scholar
Evans, D.A., Christopher, I.D., Paul, S.W., Michael, R.W., Timothy, I.R., Wesley, B.T. & Jeffrey, L.K. (1998b) Nonconventional stereochemical issues in the design of the synthesis of the vancomycin antibiotics: challenges imposed by axial and nonplanar chiral elements in the heptapeptide aglycons. Angewandte Chemie, International Edition, 37, 27042708.Google Scholar
Frlan, R. & Kikelj, D. (2006) Recent progress in diaryl ether synthesis. Synthesis, 2271-2285.Google Scholar
Gaplovsky, A., Gaplovsky, M., Toma, S. & Luche, J.—L. (2000) Ultrasound effects on the photopinacolization of benzophenone. Journal of Organic Chemistry, 65, 84448447.Google Scholar
Gholap, A.R., Venkatesan, K., Pasricha, R., Daniel, T., Lahoti, R.J. & Srinivasan, K.V. (2005) Copper and ligand-free Sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasound irradiation. Journal of Organic Chemistry, 70, 48694872.Google Scholar
Goldberg, I. (1906) Ueber phenylirungen bei gegenwart von kupfer als katalysator. Bericht Der Deutschen Chemischen Gesellschaft, 39, 16911692.CrossRefGoogle Scholar
Gosh, R., Maiti, S. & Chakraborty, A. (2005) Facile catalyzed acylation of alcohols, phenols, amines and thiols based on ZrOCl2-8H2O and acetyl chloride in solution and in solvent-free conditions. Tetrahedron Letters, 46, 147151.Google Scholar
Green, T.W. & Wuts, P.G.M. (1999) Protective Groups in Organic Synthesis, pp. 4954, 113-148, 3rd edn., Wiley, New York.Google Scholar
Gwilherm, E., Nicolas, B. & Mathieu, T. (2008) Coppermediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chemical Reviews, 108, 30543131.Google Scholar
Hermann, T. (2003) Solid-phase synthesis of benzimidazole libraries biased for RNA targets. Tetrahedron Letters, 44, 2807.Google Scholar
Huang, G., Guo, Yong-An., Zhou, H., Shu-Kai, Zhao, Shang-Yue, Liu, Ai-Ping, Wang & Jian-Feng, Wei (2007) Oxidation of cyclohexane with a new catalyst (TPPFeIII)2O supported on chitosan. Journal of Molecular Catalysis A: Chemical, 273, 144148.CrossRefGoogle Scholar
Huang, W. & Scarborough, R.M. (1999) A new ôtracelessö solid-phase synthesis strategy: synthesis of a benzimidazole library. Tetrahedron Letters, 40, 2665.Google Scholar
Ishihara, K., Kubota, M., Kurihara, H. & Yamamoto, H. (1996) Scandium trifluromethane sulfonate as an extremely active lewis acid catalyst in acylation of alcohols with acid anhydrides. Journal of Organic Chemistry, 61, 45604567.Google Scholar
Izumi, J., Shiina, I. & Mukaiyama, T. (1995) An efficient esterification reaction between equimolar amounts of free carboxylicacids and alcohols by the combined use of octamethylcyclotetrasiloxane and a catalytic amount of titaniumtris-(trifluoromethane- sulfonate). Chemistry Letters, 141-142.Google Scholar
Kantam, M.X., Bhaskar, V. & Choudary, B.M. (2001) Direct condensation of carboxylic acids with alcohols: the atom economic protocol catalysed by Fe(III)-montmorillonite. Catalysis Letters, 78, 185188.Google Scholar
Khan, A.T., Islam, S., Majee, A., Chattopadhyay, T.K. & Gosh, S. (2005) Bromodimethyl sulfonium bromide: a useful reagent for acylation of alcohols, phenols, amines, thiols, thiophenols and 1,1-diacylation of aldehydes under solvent free conditions. Journal of Molecular Catalysis A: Chemical, 239, 158165.CrossRefGoogle Scholar
Kilburn, J.P., Lau, J. & Jones, R.C.F. (2000) Solid-phase synthesis of substituted 2-amino methyl benzimidazoles. Tetrahedron Letters, 41, 54195421.Google Scholar
Krishna Mohan, K.V.V., Narender, N. & Kulkarni, S.J. (2006) Zeolite catalysed acylation of alcohols and amines with acetic acid under microwave irradiation. Green Chemistry, 8, 368372.Google Scholar
Kumar, A.K. & Chattopadhyay, T.K. (1987) Catalytic role of diorganotin dichloride in esterification of carboxylic acids. Tetrahedron Letters, 28, 37133714.Google Scholar
Kunz, K., Scholtz, U. & Ganzer, D. (2003) Renaissance of Ullmann and Goldberg reactions — progress in copper catalyzed C-N-, C-O- and C-S-Coupling. Synlett, 15, 24282439.Google Scholar
Landge, S.M. & Torok, B. (2008) Synthesis of condensed benzo[N,N]-heterocycles by microwave-assisted solid acid catalysis. Catalysis Letters, 122, 338343.Google Scholar
Lee, J.C., Tai, C.A. & Hung, S.C. (2002) Sc(OTf)3- catalyzed acetolysis of 1,6-anhydro-β-hexopyranoses and solvent-free per-acetylation of hexoses. Tetrahedron Letters, 43, 851855.Google Scholar
Lenardão, E.J., Botteselle, G.V. Azambuja, F., Perin, G. & Jacob, R.G. (2007) Citronellal as key compound in organic synthesis. Tetrahedron, 63, 66716712.Google Scholar
Ley, S.V. & Thomas, A.W. (2003) Modern synthetic methods for copper-mediated C(aryl-O), C(aryl-N), C(aryl-S) bond formation. Angewandte Chemie, International Edition, 42, 54005449.Google Scholar
Luche, J.-L. (1998) Reactivity and selectivity under microwaves in organic chemistry. Relation with medium effects and reaction mechanisms. Pp. 91106 in: Synthetic Organic Sono chemistry. Plenum Press, New York.Google Scholar
Mann, G. & Hartwig, J.F. (1997) Palladium-catalyzed formation of diaryl ethers from aryl bromides. Electron poor phosphines enhance reaction yields. Tetrahedron Letters, 46, 80058008.Google Scholar
Mazurov, A. (2000) Traceless synthesis of benzimidazoles on solid support. Bioorganic Medicinal Chemistry Letters, 10, 6770.Google Scholar
Muhaimeed, A. H. (1997) A parallel-group comparison of astemizole and loratadine for the treatment of perennial allergic rhinitis. Journal of International Medical Research, 25, 175181.CrossRefGoogle ScholarPubMed
Nakae, Y., Kusaki, I. & Sato, T. (2001) Lithium perchlorate catalyzed acetylation of alcohols under mild reaction conditions. Synlett, 1584-1586.Google Scholar
Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000) Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action. Bioorganic and Medicinal Chemistry, 8, 373380.Google Scholar
Namoodiri, V.V. & Varma, R.S. (2002) Solvent-free sonochemical preparation of ionic liquids. Organic Letters, 4, 31613163.CrossRefGoogle Scholar
Nan, Z., Kevin, W.A., Xiaohua, H., Hanh, N.N. & Stephen, L.B. (2007) A palladium-catalyzed regiospecific synthesis of N-aryl benzimidazoles. Angewandte Chemie, International Edition, 46, 7509 —7512.Google Scholar
Narender, N., Srinivasu, P., Kulkarni, S.J. & Raghavan, K.V. (2000a) Liquid phase acylation of alcohols with acetic acid over zeolites. Synthetic Communications, 30, 18871893.Google Scholar
Narender, N., Srinivasu, P., Kulkarni, S.J. & Raghavan, K.V. (2000b) Liquid phase acylation of amines with acetic acid over HY zeolite. Green Chemistry, 2, 104-105.Google Scholar
Nicolaou, K.C., Swaminathan, N., Hui, L., Naresh Kumar, F.J., Robert, H., Michael, E.S., Joshi, M.R., Christopher, N.C.B. & Masaru, T. (1998) Total synthesis of vancomycin aglycon. Part 1: Synthesis of amino acids 4-7 and construction of the AB-COD ring skeleton. Angewandte Chemie, International Edition, 37, 27082714.Google Scholar
Nicolaou, K.C., Christopher, N.C.B., Brase, S. & Winssinger, N. (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angewandte Chemie, International Edition, 38, 20962152.Google Scholar
Orita, A., Tanahashi, C., Kakuda, A. & Otera, J. (2001) Highly powerful and practical acylation of alcohols with acid anhydride catalyzed by Bi(OTf). Journal of Organic Chemistry, 66, 89268934.Google Scholar
Oskooie, H.A., Heravi, M.M., Sadnia, A., Behbahani, F.K. & Jannati, F. (2007) Solventless synthesis of 2-aryll- arylmethyl-li/-l,3-benzimidazoles catalyzed by Fe(ClO4)3 at room temperature. Chinese Chemical Letters, 18, 13571360.Google Scholar
Parac-Vogt, T.N., Deleersnyder, K. & Binnemans, K. (2005) Lanthanide(III)tosylates as new acylation catalysts. European Journal of Organic Chemistry, 1810-1815.Google Scholar
Perry, R.J. & Wilson, B.D. (1993) A novel palladiumcatalyzed synthesis of 2-arylbenzimidazoles. Journal of Organic Chemistry, 58, 70167021.Google Scholar
Perumal, S., Mariappan, S. & Selvaraj, S. (2004) A microwave assisted synthesis of 2-aryl-l-arylmethyl-lH- l,3-benzimidazole s in the presence of K-10. ARKIVOC, 46-51.Google Scholar
Phukan, P. (2004) Iodine as an extremely powerful catalyst for the acetylation of alcohols under solventfree conditions. Tetrahedron Letters, 45, 47854787.CrossRefGoogle Scholar
Preston, P.N. (1974) Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chemical Review, 74, 279314.Google Scholar
Procopious, P.A., Baugh, S.P.D., Flack, S.S. & Inglis, G.G.A. (1998) An extremely powerful acylation reaction of alcohols with acid anhydrides catalyzed by trimethylsilyl trifluromethane sulfonate. Journal of Organic Chemistry, 63, 23422347.Google Scholar
Quali, A., Spindler, J.-F. & Taillefar, M. (2006) Mild conditions for copper-catalyzed coupling reaction of phenols and aryl iodides and bromides. Advanced Synthesis and Catalysis, 348, 499505.Google Scholar
Rajagopal, R., Jarikote, D.V. & Srinivasan, K.V. (2002) Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. Chemical Communications, 616-617.Google Scholar
Ravi, V., Ramu, E., Vijay, K. & Rao, A.S. (2007) Znproline catalyzed selective synthesis of 1,2-disubstituted benzimidazoles in water. Chemical and Pharmaceutical Bulletin, 55, 12541257.Google Scholar
Ross, N.A., MacGregor, R.R. & Bartsch, R.A. (2004) Synthesis of [β-lactams and β-aminoesters via high intensity ultrasound-promoted Reformatsky reactions. Tetrahedron, 60, 20352041.Google Scholar
Salehi, P., Dabiri, M., Zolfigol, M.A., Otokesh, S. & Baghbanzadeh, M. (2006) Selective synthesis of 2- aryl-l-arylmethyl-li/-l,3-benzimidazoles in water at ambient temperature. Tetrahedron Letters, 47, 25572560.Google Scholar
Sarvanan, P. & Singh, V.K. (1999) An efficient method for acylation reactions. Tetrahedron Letters, 40, 26112614.Google Scholar
Sarvari, M.H. & Sharghi, H. (2005) Zinc oxide (ZnO) as a new, highly efficient, and reusable catalyst for acylation of alcohols, phenols and amines under solvent free conditions. Tetrahedron, 61, 1090310907.Google Scholar
Sawyer, I.S. (2000) Recent advances in diaryl ether synthesis. Tetrahedron, 56, 50455065.Google Scholar
Scott, L.J., Dunn, C.J., Mallarkey, G. & Sharpe, M. (2002) Esomeprazole: a review of its use in the management of acid-related disorders. Drugs, 62, 15031508.Google Scholar
Shiina, I. & Mukaiyama, T. (1994) A novel method for the preparation of macrolides from co- hydroxycarboxylic acids. Chemistry Letters, 677-680.Google Scholar
Shrini, F.M., Zolfigol, M.A., Abedini, M. & Salehi, P. (2003) A1(HSO4)3 catalyzed acetylation and formylation of alcohols. Bulletin of the Korean Chemical Society, 24, 16831685.Google Scholar
Somorjai, G.A. & Zaera, F. (1982) Heterogeneous catalysis on the molecular scale. The Journal of Physical Chemistry, 86, 3070- 3078.Google Scholar
Sreedhar, B. & Reddy, P.S. (2007) Sonochemical synthesis of 1,4-disubstituted 1,2,3-triazoles in aqueous medium. Synthetic Communications, 37, 805812.Google Scholar
Sreedhar, B., Bhaskar, V., Sridhar, Ch., Srinivas, T., Laszlo, K. & Klara, S. (2003) Acylation of alcohols and amines with carboxylic acids: a first report catalyzed by iron(III) oxide-containing activated carbon. Journal of Molecular Catalysis A: Chemical, 191, 141147.Google Scholar
Sreedhar, B., Reddy, P.S., Veda Prakash, B. & Ravindra, A. (2005) Ultrasound-assisted rapid and efficient synthesis of propargylamines. Tetrahedron Letters, 46, 70197022.Google Scholar
Sreedhar, B., Arundhathi, R., Amarnath Reddy, M. & Parthasarathy, G. (2009) Highly efficient heterogenous catalyst for acylation of alcohols and amines using natural ferrous chamosite. Applied Clay Sciences, 43, 425434.Google Scholar
Steglich, W. & Hofle, G. (1969) Simple method for the esterification of carboxylic acids. Angewandte Chemie International Edition, 8, 981.Google Scholar
Suslick, K.S. (1998) Pp. 227287 in: Ultrasound, its Chemical, Physical and Biological Effects. VCH, Weinheim, Germany.Google Scholar
Tammaddon, F., Amrollahi, M.A. & Sharafat, L. (2005) Catalytic role of diorganotin dichloride in esterification of carboxylic acids. A green protocol for chemoselective O-acylation in the presence of zinc oxide as a heterogeneous, reusable and eco-friendly catalyst. Tetrahedron Letters, 46, 78417844.Google Scholar
Thomas, A.W. & Ley, S.V. (2003) Copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angewandte Chemie International Edition, 42, 54005449.Google Scholar
Trivedi, R., De, S.K. & Gibbs, R.A. (2006) A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical, 245, 811.CrossRefGoogle Scholar
Tsuji, J. (1995) Pp. 290-406 in. Palladium Reagents and Catalysts, 1st. ed. John Wiley & Sons, New York, USA.Google Scholar
Tumelty, D., Cao, K. & Holmes, C. P. (2001) Traceless solid-phase synthesis of substituted benzimidazoles via a base-cleavable linker. Organic Letters, 3, 8385.Google Scholar
Ullmann, F. (1903) Ueber eine neue bildungsweise von diphenylaminderivaten. Berichte Deutschen Chemischen Gesellschaft, 36, 23822384.Google Scholar
Ullmann, F. (1904) Ueber eine neue darstellungsweise von phenylathersalicylsaure. Berichte Deutschen Chemischen Gesellschaft, 37, 853854.Google Scholar
Ullmann, F. & Zlokasoff, M. (1905) Ueber arylsalicylsäuren und deren ueberführung in xanthone. Berichte Deutschen Chemischen Gesellschaft, 38, 21112119.Google Scholar
Varala, R., Nasreen, A., Enugala, R. & Adapa, S.R. (2007) L-Proline catalysed selective synthesis of 2-aryl-1-arylmethyl-li/-benzimidazoles. Tetrahedron Letters, 48, 6972.Google Scholar
Vedejs, E. & Diver, S.T. (1993) Tributylphosphine: a remarkable acylation catalyst. Journal of American Chemical Society, 115, 33583359.Google Scholar
Vedejs, E. & Mackay, J.A. (2001) Kinetic resolution of allylic alcohols using a chiral phosphine catalyst. Organic Letters, 3, 535536.Google Scholar
Vedejs, E., Bennet, N.S., Conn, L.M., Diver, S.T., Gingras, M., Lin, S., Oliver, P.M. & Peterson, M.J. (1993) Tributylphosphine-catalyzed acylations of alcohols: scope and related reactions. Journal of Organic Chemistry, 58, 72867288.Google Scholar
Velusamy, S., Borpuzari, S. & Punniyamurthy, T. (2005) Cobalt(II)-catalyzed direct acetylation of alcohols with acetic acid. Tetrahedron, 61, 20112015.Google Scholar
Vourloumis, D., Takahashi, M., Simonsen, K.B., Ayida, B.K., Barluenga, S., Winters, G.C. & Mazurov, A. (2000) Traceless synthesis of benzimidazoles on solid support. Bioorganic Medicinal Chemistry Letters, 10, 6770.Google Scholar
Wu, Z., Rea, P. & Wickham, G. (2000) ‘One-pot’ nitro reduction—cyclisation solid phase route to benzimidazoles. Tetrahedron Letters, 41, 98719874.Google Scholar
Zarrinmayeh, H., Nunes, A.M., Ornstein, P.L., Zimmerman, D.M., Arnold, M.B., Schober, D.A., Gackenheimer, S.L., Bruns, R.F., Hipskind, P.A., Britton, T.C., Cantrell, B.E. & Gehlert, D.R. (1998) Synthesis and evaluation of a series of novel 2-[(4- chlorophenoxy)methyl] benzimidazoles as selective neuropeptide Y Yl receptor antagonists. Journal of Medicinal Chemistry, 41, 27092719.Google Scholar
Zheng, N. & Buchwald, S.L. (2007) Copper-catalyzed regiospecific synthesis of N-alkylbenzimidazoles. Organic Letters, 9, 47494751.Google Scholar
Zhu, Z., Lippa, B., Drach, J.C. & Townsend, L.B. (2000) Design synthesis and biological evaluation of tricyclic nucleocides dimensional probes as analogues of certain antiviral polyhalogenated benzimidazole ribonucleosides. Journal of Medicinal Chemistry, 43, 24302437.Google Scholar