Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T15:20:49.472Z Has data issue: false hasContentIssue false

Ceramic tiles based on central Tunisian clays (Sidi Khalif formation)

Published online by Cambridge University Press:  09 July 2018

M. Medhioub
Affiliation:
Faculty of Science Sfax, 3018, Sfax-Tunisia
W. Hajjaji*
Affiliation:
Geobiotec, Geosciences Dept, University of Aveiro.3810-193 Aveiro, Portugal Ceramics and Glass Engineering Dept & CICECO. University of Aveiro.3810-193 Aveiro, Portugal
M. Hachani
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM, BP 273, 8020 Soliman, Tunisia
A. Lopez-Galindo
Affiliation:
Instituto Andaluz de Ciencias de la Tierra. CSIC –, University of Granada. Avda. Fuentenueva, 18002-Granada, Spain
F. Rocha
Affiliation:
Geobiotec, Geosciences Dept, University of Aveiro.3810-193 Aveiro, Portugal
J. A. Labrincha
Affiliation:
Ceramics and Glass Engineering Dept & CICECO. University of Aveiro.3810-193 Aveiro, Portugal
F. Jamoussi
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM, BP 273, 8020 Soliman, Tunisia
*

Abstract

This study aims to find alternatives to some overexploited deposits in the north of Tunisia. The clays of the Sidi Khalif formation, of Uppermost Jurassic to Lower Cretaceous age, seem suitable to support this strategy, due to their abundance. In terms of mineralogy, they can be divided into two distinct groups, related to their palaeogeographic and eustatic contexts. The clays of the Sidi Khalif formation from Jebel Houareb (JH) and Jebel Meloussi (JM) are richer in clay minerals, while those of Jebel Rhouis (JR) and Jebel Boudinar (JB) zones are dolomite-rich. The compositional differences between the two groups influenced their technological behaviour in production of ceramic tiles. Upon firing, forsterite and gehlenite crystallized in the carbonate-rich JR and JB clays, whereas mullite formed in the JH and JM clays. Concerning their ceramic properties, the tiles made from JR or JB clays showed low bending strength and high water absorption. For JH and JM, the tiles had slightly greater mechanical resistance, but exhibited considerable linear shrinkage. These defects were partially corrected by introducing new formulations based on the same clays and by altering the firing cycles (HM1, HM2, RB1 and RB2). With these modifications, “Porcelanico” and “Monoporosa” technologically conforming tiles were obtained from HM2 and RB2 formulations, respectively.

Type
12th George Brown Lecture
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aras, A. (2004) The change of phase composition in kaolinite and illite-rich clay-based ceramic bodies. Applied Clay Science, 24, 257–269.Google Scholar
Arib, A., Sarhiri, A., Moussa, R., Remmal, T. & Gomina, M. (2007) Caractéristiques structurales et mécaniques de céramiques à base d’argiles : influence de la source de feldspath. Comptes Rendus Chimie, 10, 502–510.Google Scholar
Azaïez, H., Bédir, M., Tanfous, D. & Soussi, M. (2007) Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aich-Majoura region (Central Tunisia). Journal of African Earth Sciences, 48, 1–18.Google Scholar
Barlow, S.G., Manning, D.A.C. & Hill, P. I. (2000) The influence of time and temperature on the reactions and transformations of clinochlore as a ceramic clay mineral. International Ceramics, 2, 5–10.Google Scholar
Bédir, M., Boukadi, N., Tlig, S., Ben Timzal, F., Zitouni, L., Alouani, R., Slimane, F., Bobier, C. & Zargouni, F. (2001) Subsurface Mesozoic basins in the central Atlas of Tunisia: Tectonics, sequence deposit distribution and hydrocarbon potential. AAPG Bulletin, 85, 885–907.Google Scholar
Ben Ferjani, A., Burollet, P. F. & Mejri, F. (1990) Petroleum Geology of Tunisia. Memoires Entreprise Tunisienne des Activités Pétrolières, Tunisie, 1, 194 pp.Google Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science, 1, Elsevier, Amsterdam.Google Scholar
Bouaziz, S., Barrier, E., Soussi, M., Turki, M. M. & Zouari, H. (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227–253.Google Scholar
Chen, Y.F., Wang, M. C. & Hon, M. H. (2004) Phase Transformation and Growth of Mullite in Kaolin Ceramics. Journal of the European Ceramic Society, 24, 2389–2397.Google Scholar
Christaras, B. (1991) Comparison of the Casagrande and fall cone penetrometer methods for liquid limit determination in marls from Crete, Greece. Engineering Geology, 31, 131–142.Google Scholar
Das, S.K., Dana, K., Singh, N. & Sarkar, R. (2005) Shrinkage and Strength behaviour of quartzitic and kaolinitic clays in wall tile composition. Applied Clay Science, 29, 137–143.Google Scholar
Dondi, M. (1999) Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15, 337–366.Google Scholar
Hajjaji, W., Hachani, M., Moussi, B., Jeridi, K., Medhioub, M., Lopez-Galindo, A., Rocha, F., Labrincha, J. A. & Jamoussi, F. (2010) Mineralogy and plasticity in clay sediments from north-east Tunisia. Journal of African Earth Sciences, 57, 41–4.Google Scholar
Holtz, R. D. & Kovacs, W. D. (1981) The relationship between geology and landslide hazards of Atchison, Kansas, and vicinity. Current Research in Earth Sciences (Kansas Geological Survey), 244, part 3.Google Scholar
ISO 10545-3 (1995) Ceramic tiles. Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density.Google Scholar
ISO 10545-4 (2004) Ceramic tiles. Part 4. Determination of modulus of rupture and bending strength.Google Scholar
Jeridi, K., Hachani, M., Hajjaji, W., Moussi, B., Medhioub, M., Lopez-Galindo, A., Kooli, F., Zagouni, F., Labrincha, J. A. & Jamoussi, F. (2008) Technological behaviour of some Tunisian clays prepared by dry ceramic processing. Clay Minerals, 43, 339–350.Google Scholar
Jordán, M.M., Sanfeliu, T. & De la Fuente, C. (2001) Firing transformations of tertiary clays used in the manufacturing of ceramic tiles. Applied Clay Science, 20, 87–95.Google Scholar
Khalfaoui, A., Kacim, S. & Hajjaji, M. (2006) Sintering mechanism and ceramic phases of an illitic–chloritic raw clay. Journal of the European Ceramic Society, 26, 161–167.CrossRefGoogle Scholar
Kök, M. V. & Smykatz-Kloss, W. (2008) Characterization, correlation and kinetics of dolomite samples as outlined by thermal methods. Journal of Thermal Analysis and Calorimetry, 91, 565–568.Google Scholar
LCPC (1987) Limites d’Atterberg, limite de liquidité, limite de plasticité. Laboratoire Central des Ponts et Chaussées No. 19.Google Scholar
López-Galindo, A., Torres-Ruiz, J. & González-López, J.M. (1996) Mineral quantification in sepiolitepalygorskite deposits using X-ray diffraction and chemical data. Clay Minerals, 31, 217224.Google Scholar
M’Rabet, A. (1981) Stratigraphie, sédimentation et diagenèse des séries du Crétacé inférieur de Tunisie Centrale. D.Sc. Thesis, Université de Paris Sud Orsay, France.Google Scholar
Moore, D. M. & Jr.Reynolds, R. C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd Edition, Oxford University Press, New York.Google Scholar
Moussi, B., Medhioub, M., Hatira, N., Yans, J., Hajjaj, W., Rocha, F., Labrincha, J. A. & Jamoussi, F. (2011) Identification and use of white clayey deposits from the area of Tamra (northern Tunisia) as ceramic raw materials. Clay Minerals, 46, 165–175.Google Scholar
Rivi, A. & Ries, B. (1997) Single-line dry grinding technology. Ceramic World, 24, 132–141.Google Scholar
Schnyder, J., Gorin, G., Soussi, M., Baudin, F. and Deconinck, J.F. (2005) Enregistrement de la variation climatique au passage Jurassique/Crétacé sur la marge sud de la Téthys: minéralogie des argiles et palynofaciès de la coupe de Jebel Meloussi (Tunisie centrale, formation Sidi Khalif). Bulletin de la Société Géologique de France, 176, 171–182.Google Scholar
Sedmale, G., Sperberga, I., Sedmalis, U. and Valancius, Z. (2006) Formation of high-temperature crystalline phases in ceramic from illite clay a dolomite. Journal of the European Ceramic Society, 26, 3351–3355.CrossRefGoogle Scholar
Sousa, S.J.G. & Holanda, J.N.F (2005) Development of red wall tiles by the dry process using Brazilian raw materials. Ceramics International, 31, 215–222.Google Scholar
Soussi, M. (2000) Le Jurassique de la Tunisie atlasique: stratigraphie, dynamique sédimentaire, paléogéographie et intérêt pétrolier. D.Sc. Thesis. Univ. Tunis II, Tunisie.Google Scholar
Souza, G.P., Sanchez, R. & Holanda, J.N.F. (2003) Thermal and structural characterization of Brazilian south-eastern kaolinitic clays. Journal of Thermal Analysis and Calorimetry, 73, 293–305.Google Scholar
Vieira, C.M.F., da Silva, P.R.N., da Silva, F.T., Capitaneo, J. L. & Monteiro, S. N. (2005) Microstructural evaluation and properties of a ceramic body for extruded floor tiles. Revista Matéria, 10, 526–536.Google Scholar
Yeskis, D., Koster Van Groos, A. F. & Guggenheim, S. (1985) The dehydroxylation of kaolinite. American Mineralogist, 70, 159–l64.Google Scholar
Zevin, L. S. & Kimmel, G. (1995) Quantitative X-ray Diffractometry. Springer, New York.Google Scholar