Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T15:07:10.632Z Has data issue: false hasContentIssue false

CEC determination with Cu-triethylenetetramine: recommendations for improving reproducibility and accuracy

Published online by Cambridge University Press:  02 January 2018

Helge Stanjek*
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstr. 8, 52072 Aachen, Germany
Dennis Künkel
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstr. 8, 52072 Aachen, Germany
*

Abstract

The strongly coloured Cu-triethylenetetramine complex (Cu-Trien) provides a fast and easy way to measure the cation exchange capacity of clay samples, but the reliability of this method has been questioned in recent publications. This work identifies several reasons for the poor reliability, thus improving both the precision and accuracy of the CEC method. Pure Trien is shown here to intercalate as does the Cu-Trien complex. Hence, the purity of Trien and also the Cu/Trien ratio require special attention. Using cold Cu-Trien solutions produces systematic deviations in CEC determinations caused by errors in the pipetted volumes. The present study demonstrates, for the first time, that the Cu-Trien complex protonates and changes its effective charge beyond 2+. Based on titration experiments at three different temperatures, a correction function is derived for calculating the total charge of the Cu-Trien complex as a function of pH. Accounting for these pH-corrected charges indicates that Cu-Trien may well be insensitive to edge charges on smectite. Finally, it is shown here that the ratio of sample mass to the initial amount of Cu-Trien is critical because excess adsorption of Cu-Trien in addition to CEC sensu strictu was observed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, L., Bergaya, F. & Lagaly, G. (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Minerals, 40, 441453.CrossRefGoogle Scholar
Bencini, A., Bianchi, A., Garcia-España, E., Micheloni, M. & Ramirez, J.A. (1999) Proton coordination by polyamine compounds in aqueous solution. Coordination Chemistry Reviews, 188, 97156.CrossRefGoogle Scholar
Bergaya, F. & Vayer, M. (1997) CEC of clays: Measurement by adsorption of a copper ethylendiamine complex. Applied Clay Science, 12, 275280.CrossRefGoogle Scholar
Bergaya, F., Lagaly, G. & Vayer, M. (2006) Cation and anion exchange. Pp. 979–1001 in: Handbook of Clay Science (F. Bergaya, B. Theng & G. Lagaly, editors). Elsevier, Amsterdam.Google Scholar
Bergmann, K. & O'Konski, C.T. (1963) A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite. Journal of Physical Chemistry, 67, 21692177.CrossRefGoogle Scholar
Borden, D. & Giese, R. (2001) Baseline studies of the clay minerals society source clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays and Clay Minerals, 49, 44445.Google Scholar
Bourg, I.C., Sposito, G. & Bourg, A.C.M. (2007) Modeling the acid-base surface chemistry of montmorillonite. Journal of Colloid and Interface Science, 312, 297310.Google Scholar
Bradbury, M. & Baeyens, B. (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am (III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica et Cosmochimica Acta, 69, 875892.CrossRefGoogle Scholar
Bujdák, J. (2015) Hybrid systems based on organic dyes and clay minerals: Fundamentals and potential applications. Clay Minerals, 50, 549571.Google Scholar
Bujdak, I., Janek, M., Madejova, L. & Komadel, P. (1998) Influence of the layer charge density of smectites on the interaction with methylene blue. Journal of the Chemical Society, Faraday Transactions, 94, 34873492.CrossRefGoogle Scholar
Bujdák, J., Jureckova, J., Bujdakova, H., Lang, K. & Sersen, F. (2009) Clay mineral particles as efficient carriers of methylene blue used for antimicrobial treatment. Environmental Science & Technology, 43, 62026207.CrossRefGoogle ScholarPubMed
Cascio, S., De Robertis, A. & Foti, C. (1999) Protonation of diamines H2N-(CH2)n-NH2 (n = 2-10) in NaCl aqueous solution at different ionic strengths. Journal of Chemical and Engineering Data, 44, 735738.CrossRefGoogle Scholar
Cascio, S., De Robertis, A. & Foti, C. (2000) Protonation of polyamines in NaCl aqueous solution and binding of Cl by polyammonium cations. Fluid Phase Equilibria, 170, 167181.Google Scholar
Cheng, K.L. (1962) EDTA as masking agent in selective spectrophotometric determination of copper with triethylentetramine. An interpretation of masking. Analytical Chemistry, 34, 13921395.Google Scholar
Czimerova, A., Bujdák, J. & Dohrmann, R. (2006) Traditional and novel methods for estimating the layer charge of smectites. Applied Clay Science, 34, 213.CrossRefGoogle Scholar
De, D.K., Das Kanungo, J.L. & Chakravarti, S.K. (1974) Interaction of crystal violet and malachite green with bentonite and their desorption by inorganic and surface active quaternary ammonium ions. Indian Journal of Chemistry, 12, 165166.Google Scholar
De Robertis, A., De Stefano, C., Patane, G. & Sammartano, S. (1993) Effects of salt on the protonation in aqueous solution of triethylenetetramine and tetraethylenepen-tamine. Journal of Solution Chemistry, 22, 927940.Google Scholar
De Robertis, A., Foti, C., Guiffre, O. & Sammartano, S. (2001) Dependence on ionic strength of polyamine protonation in NaCl aqueous solution. Journal of Chemical and Engineering Data, 46, 14251435.Google Scholar
De Stefano, C., Foti, C. & Sammartano, S. (1999) Interaction of polyamines with Mg2+ and Ca2+ . Journal of Chemical and Engineering Data, 44, 744749.Google Scholar
Delavernhe, L., Steudel, A., Darbha, G.K., Schäfer, T., Schuhmann, R., Wöll, C., Geckeis, H. & Emmerich, K. (2015) Influence of mineralogical and morphological properties on the cation exchange behaviour of dioctahedral smectites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 591599.Google Scholar
Dohrmann, R. & Kaufhold, S. (2009) Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays. Clays and Clay Minerals, 57, 338352.Google Scholar
Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Plötze, M., Sandén, T., Sellin, P., Svensson, D. & Valter, M. (2012a) Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: I. Cu(II)-Triethylenetetramine method. Clays and Clay Minerals, 60, 162175.CrossRefGoogle Scholar
Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Plötze, M., Sandén, T., Sellin, P., Svensson, D. & Valter, M. (2012b) Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: II. Alternative methods. Clays and Clay Minerals, 60, 176185.Google Scholar
Doyle, F.M. & Liu, Z. (2003) The effect of triethylene-tetramine (Trien) on the ion flotation of Cu2+ and Ni2+ . Journal of Colloid and Interface Science, 258, 396403.CrossRefGoogle Scholar
Emmerich, K., Wolters, F., Kahr, G. & Lagaly, G. (2009) Clay profiling: The classification of montmorillonites. Clays and Clay Minerals, 57, 104114.CrossRefGoogle Scholar
Eren, E. & Afsin, B. (2008) Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces. Dyes and Pigments, 76, 220225.Google Scholar
Fletcher, P. & Sposito, G. (1989) The chemical modelling of clay/electrolyte interactions for montmorillonite. Clay Minerals, 24, 375391.Google Scholar
Gran, G. (1950) Determination of the equivalent point in potentiometric titrations. Acta Chemica Scandinavia, 4, 559577.CrossRefGoogle Scholar
Gran, G. (1952) Determination of the equivalence point in potentiometric titrations. Part II Analyst, 77, 661671.Google Scholar
Grauer, Z., Grauer, G.L., Avnir, D. & Yariv, S. (1987) Metachromasy in clay minerals. Sorption of pyronin Y by montmorillonite and Laponite. Journal of the Chemical Society, Faraday Transactions, 83, 16851701.CrossRefGoogle Scholar
Grygar, T., Bezdička, P., Hradil, D., Hruskova, M., Novotna, K., Kadlec, J., Pruner, P. & Oberhansli, H. (2005) Characterization of expandable clay minerals in Lake Baikal sediments by thermal dehydration and cation exchange. Clays and Clay Minerals, 53, 389400.Google Scholar
Grygar, T., Kadlec, J., Zigova, A., Mihaljevic, M., Nekutova, T., Lojka, R. & Svetlik, I. (2009) Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu(II) triethylenetetramine. Clays and Clay Minerals, 57, 168182.Google Scholar
Hang, P.T. & Brindley, G. (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (Clay-organic studies XVIII). Clays and Clay Minerals, 18, 203212.CrossRefGoogle Scholar
Häusler, W. & Stanjek, H. (1988) A refined procedure for the determination of the layer charge with alkyl-ammonium ions. Clay Minerals, 23, 333337.CrossRefGoogle Scholar
Heuser, M., Weber, C., Stanjek, H., Chen, H., Jordan, G., Schmahl, W.W. & Natzeck, C. (2014) The interaction between bentonite and water vapor. I: Examination of physical and chemical properties. Clay and Clay Minerals, 62, 188202.Google Scholar
Jarlbring, M., Gunneriusson, L., Hussmann, B. & Forsling, W. (2005) Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions. Journal of Colloid and Interface Science, 285, 212217.Google Scholar
Kahr, G. & Madsen, F.T. (1995) Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 9, 327336.Google Scholar
Kaufhold, S. & Dohrmann, R. (2013) The variable charge of dioctahedral smectites. Journal of Colloid and Interface Science, 390, 225233.CrossRefGoogle ScholarPubMed
Kaufhold, S., Dohrmann, R., Ufer, K., Kleeberg, R. & Stanjek, H. (2011) Termination of swelling capacity of smectites by Cutrien exchange. Clay Minerals, 46, 411420.Google Scholar
Keren, R. & Sparks, D. (1995) The role of edge surfaces in flocculation of 2:1 clay minerals. Soil Science Society of America Journal, 59, 43035.CrossRefGoogle Scholar
Kowalak, S., Szyld, M., Jankowska, A., Zalewska, A., Colella, A. & De Gennaro, B. (2015) Embedment of Methylene Blue in natural and synthetic phillipsite. Clay Minerals, 50, 2330.Google Scholar
Lagaly, G. & Weiss, A. (1970) Determination of the layer charge in mica-type layer silicates. In: 1 st International Clay Conference. Tokyo, pp. 61–80.Google Scholar
Lochner, K.H., Ballweg, T. & Fahrenkrog, H.-H. (1996) Untersuchungen zur Meßgenauigkeit von Kolbenhub-pipetten mit Luftpolster. Journal für Labor und Medizin, 20, 430440.Google Scholar
Margulies, L., Rozen, H. & Nir, A. (1988) Model for competitive adsorption of organic cations on clays. Clays and Clay Minerals, 36, 270276.Google Scholar
Meier, L. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.Google Scholar
Mohan, K.K. & Fogler, H.S. (1997) Effect of pH and layer charge on formation damage in porous media containing swelling clays. Langmuir, 13, 28632872.Google Scholar
Nagy, N.M. & Konya, I. (2006) Acid-base properties of bentonite rocks with different origins. Journal of Colloid and Interface Science, 295, 173180.Google Scholar
Narine, D.R. & Guy, R.D. (1981) Interactions of some large organic cations with bentonite in dilute aqueous systems. Clays and Clay Minerals, 29, 205212.Google Scholar
Nir, S. (1986) Specific and non-specific cation adsorption to clays: Solution concentrations and surface potentials. Soil Science Society of America Journal, 50, 5257.Google Scholar
Nurchi, V.M., Crisponi, G., Crespo-Alonso, M., Lachowicz, J.I., Szewczuk, Z. & Cooper, G.J.S. (2013) Complex formation equilibria of CuII and ZnII with triethylene-tetramine and its mono- and di-acetyl metabolites. Dalton Transactions, 42, 61616170.CrossRefGoogle Scholar
Parkhurst, D. & Appelo, C. (1999) User's guide to PHREEQC (version 2.6) — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Technical report, US Geological Survey Water-Resources Investigations Report 99-4259.Google Scholar
Remy, I. & Orsini, L. (1976) Utilisation du chlorure de cobalthexamine pour la détermination simultanee de la capacité d'échange et des bases échangeables dans les sols. Sience du Sol, 4, 269275.Google Scholar
Rohwer, H., Collier, N. & Hosten, E. (1995) Spectrophotometric study of arsenazo III and its interactions with lanthanides. Analytica Chimica Acta, 314, 219223.Google Scholar
Rytwo, G., Serban, C., Nir, S. & Margulies, L. (1991) Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays and Clay Minerals, 39, 551555.Google Scholar
Sposito, G., Holtzclaw, K., Charlet, L., Jounay, C. & Page, A. (1983) Sodium calcium and sodium magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media. Soil Science Society of America Journal, 47, 5156.Google Scholar
Stanjek, H., Glasmann, R.J. & Hellmann, A. (2013) Smectite contents of road aggregates derived from crushed volcanic rocks and their impact on the durability of road pavements. Clay Minerals, 48, 46371.Google Scholar
Steudel, A., Weidler, P.G., Schuhmann, R. & Emmerich, K. (2009) Cation exchange reactions of vermiculite with Cu-triethylenetetramine as affected by mechanical and chemical pretreatment. Clays and Clay Minerals, 57, 48693.CrossRefGoogle Scholar
Szekeres, M. & Tombácz, E. (2012) Surface charge characterization of metal oxides by potentiometric acid-base titration, revisited theory and experiment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 302313.Google Scholar
Tertre, E., Prêt, D. & Ferrage, E. (2011) Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na exchange on montmorillonite. Part 2: Understanding the effect of the m/V ratio. Implications for pore water composition and element transport in natural media. Journal of Colloid and Interface Science, 363, 334347.Google Scholar
Tombácz, E., Abrahám, I., Gilde, M. & Szántó, F. (1990) The pH-dependent colloidal stability of aqueous montmorillonite suspensions. Colloids and Surfaces, 49, 7180.Google Scholar
Tournassat, C., Greneche, J.-M., Tisserand, D. & Charlet, L. (2004) The titration of clay minerals. I. Discontinous back titration technique combined with CEC measurements. Journal of Colloid and Interface Science, 273, 224233.CrossRefGoogle Scholar
Way, J.T. (1852) On the power of soils to adsorb manure. Journal of the Royal Agricultural Society of England, 13, 123143.Google Scholar
Weiss, A. (1958) Überäquimolaren Kationenaustausch bei niedrige geladenen Ionenaustauschern. Kolloidzeitschrift, 158, 2228.Google Scholar
Westcott, C.C. (1978) pH Measurements. Academic Press, London.Google Scholar
Yariv, S., Nasser, A. & Baron, P. (1990) Metachromasy in clay minerals. Spectroscopic study of the adsorption of crystal violet by laponite. Journal of the Chemical Society, Faraday Transactions, 86, 15931598.Google Scholar
Zeelmaekers, E., Honty, M., Derkowski, A., Srodon, I., De Craen, M., Vandenberghe, N., Adriaens, R., Ufer, K. & Wouters, L. (2015) Qualitative and quantitative mineralogical composition of the Rupelian Boom Clay in Belgium. Clay Minerals, 50, 249272.Google Scholar