Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T14:14:11.294Z Has data issue: false hasContentIssue false

Cation site distribution in clinochlores: a NIR approach

Published online by Cambridge University Press:  09 July 2018

E. Ferrage*
Affiliation:
LGIT, EquipeGéochimie de l'Environnement, Maison des Géosciences, BP 53, 38041GrenobleCedex 9
F. Martin
Affiliation:
Université de Limoges, CNRS UMR 6532 ‘ Hydr'A.S.A.’, 123 Avenue Albert Thomas, 87060 Limoges Cedex
P. Micoud
Affiliation:
Equipe Géomarg, UMR 5563 du CNRS, LMTG, 39, allées Jules Guesde, Université Paul Sabatier, 31000 Toulouse
S. Petit
Affiliation:
Université de Poitiers, CNRS UMR 6532 ‘ Hydr'A.S.A.’, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex
P. De parseval
Affiliation:
Equipe Géomarg, UMR 5563 du CNRS, LMTG, 39, allées Jules Guesde, Université Paul Sabatier, 31000 Toulouse
D. Beziat
Affiliation:
Equipe Géomarg, UMR 5563 du CNRS, LMTG, 39, allées Jules Guesde, Université Paul Sabatier, 31000 Toulouse
J . Ferret
Affiliation:
Talc de Luzenac S.A., BP 1162, 31036 Toulouse Cedex, France
*

Abstract

A near infrared (NIR) spectroscopy approach was undertaken to collect information on the Al cationic distribution in tetrahedral and octahedral sites in natural chlorite (clinochlore) samples. Structural formulae were established using electron microprobe and Mössbauer spectroscopy. A band located near 7115 cm–1 was attributed to the overtone of OH fundamental stretching mode of Mg2AlOH and increases with the total Al amount. Good correlation was obtained between the (SiAl)O–OH vibration band area and tetrahedral Al content, making it easy to partition Al (and thus Fe3+) between octahedral and tetrahedral sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aja, S.U. & Dyar, M.D. (2002) The stability of Fe-Mg chlorites in hydrothermal solutions – I. Results of experimental investigations. Applied Geochemistry, 17, 12191239.Google Scholar
Barrios, J., Planc¸on, A., Cruz, M.I. & Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite – Relationship with the infrared spectra. Clays and Clay Minerals, 25, 422429.CrossRefGoogle Scholar
Bayliss, P. (1975) Nomenclature of the trioctahedral chlorites. The Canadian Mineralogist, 13, 178180.Google Scholar
De Grave, E., Vandenbruwaene, J. & Van Bockstael, M. (1987) 57Fe Müssbauer spectroscopic analyses of chlorites. Physics and Chemistry of Minerals, 15, 173180.CrossRefGoogle Scholar
Ferrage, E., Martin, F., Boudet, A., Petit, S., Fourty, G., Jouffret, F., Micoud, P., de Parseval, P., Salvi, S., Bourgerette, C., Ferret, J., Saint-Gérard, Y., Buratto, S. & Fortune, J.P. (2002) Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and mineral-matrix modelization. Journal of Materials Science, 37, 15611573.CrossRefGoogle Scholar
Frost, R.L., Locos, O.B., Kristóf, J. & Kloprogge, J.T. (2001a) Infrared spectroscopic study of potassium and cesium acet ate- intercalated kaolinites. Vibrational Spectroscopy, 26, 3342.CrossRefGoogle Scholar
Frost, R.L., Locos, O.B., Huan, H. & Kloprogge, J.T. (2001b) Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27, 113.CrossRefGoogle Scholar
Frost, R.L., Ding, Z. & Kloprogge, J.T. (2001c) The application of near-infrared spectroscopy to the study of brucite and hydrotalcite structure. Canadian Journal of Analytical Science and Spectroscopy, 45, 96101.Google Scholar
Frost, R.L., Kloprogge, J.T. & Ding, Z. (2002a) Nearinfrared spectroscopic study of nontronites and ferruginous smectites. Spectrochimica Acta, 58A, 16571668.CrossRefGoogle Scholar
Frost, R.L., Makó, E., Kristóf, J. & Kloprogge, J.T. (2002b) Modification of kaolinite surfaces through mechanochemical treatment – a mid-IR and near-IR spectroscopic study. Spectrochimica Acta, 58A, 28492859.CrossRefGoogle Scholar
Gonzalez, A., de Saja, J.A. & Alonso, M. (1995) Morphology and tensile properties of compression- moulded talc-fill ed polypropyl ene. Materials, Plastics, Rubber & Composites Processing and Applications, 24, 131.Google Scholar
Goodman, B.A. & Bain, D.C. (1979) Müssbauer spectra of chlorites and their decomposition products. Proceedings of the International Clay Conference 1978, pp. 6574. Elsevier, Amsterdam.Google Scholar
Hunt, G.R. & Salisbury, J.W. (1970) Visible and nearinfrared spectra of minerals and rocks. I. Silicate minerals. Modern Geology, 1, 283300.Google Scholar
Kloprogge, J.T., Huan, H. & Frost, R.L. (2000) Nearinfrared spectroscopic study of synthetic and natural pyrophyllite. Neues Jahrbuch für Mineralogie Monatshefte, 337347.Google Scholar
Kloprogge, J.T., Huan, H. & Frost, R.L. (2001) Nearinfrared spectroscopic study of basic aluminium sulfate and nitrate. Journal of Materials Science, 36, 603607.CrossRefGoogle Scholar
Lougear, A., Grodzicki, M., Bertoldi, C., Trautwein, A.X., Steiner, K. & Amthauer, G. (2000) Müssbauer and molecular orbital study of chlorites. Physics and Chemistry of Minerals, 27, 258269.CrossRefGoogle Scholar
Lougear, A., Künig, I., Trautwein, A.X. & Suess, E. (2001) Müssbauer investigations to characterize Fe lattice sites in sheet silicates and Peru Basin deep-sea sediments. Deep-Sea Research II, 48, 37013711.CrossRefGoogle Scholar
Martin, F., Micoud, P., Delmotte, L., Marichal, C., Le Dred, R., de Parseval, P., Mari, A., Fortune, J.P., Salvi, S., Beziat, D., Grauby, O. & Ferret, J. (1999) The structural formula of talc from the Trimouns deposit, Pyrenees, France. The Canadian Mineralogist, 37, 9971006.Google Scholar
Menczel, J. & Varga, J. (1983) Influence of nucleating agents on crystallization of polypropylene. I. Talc as nucleating agent. Journal of Thermal Analysis, 28, 161174.CrossRefGoogle Scholar
Moine, B., Gavoille, B. & Thiebault, J. (1982) Géochimie des transformations à l’origine du gisement de talc et chlorite de Trimouns (Luzenac, Ariège, France). I – Mobilité des éléments et zonalités. Bulletin de Minéralogie, 105, 6275.Google Scholar
Moine, B., Fortuné J.P., Moreau, P. & Viguier, F. (1989) Comparative mineralogy, geochemistry and conditions of formation of two metasomatic talc and chlorite deposits: Trimouns (Pyrénées, France) and Rabenwald (Eastern Alps, Austria). Economic Geology, 84, 13981416.CrossRefGoogle Scholar
Pal, T., Das, D. & Mitra, S. (1992) 57Fe Müssbauer investi gation of natural ly oxidized chlorit e. Hyperfine Interactions, 73, 313321.Google Scholar
Petit, S., Madejová J., Decarreau, A. & Martin, F. (1999) Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy. Clays and Clay Minerals, 47, 103108.Google Scholar
Petit, S., Martin, F., Wiewióra, A., de Parseval, P. & Decarreau, A. (2003) Crystal chemistry of talcs studied by Near Infrared (NIR) spectroscopy. American Mineralogist(in review).Google Scholar
de Parseval, P., Fournes, L., Fortuné|J.P., Moine, B. & Ferret, J. (1991) Distribution du Fer dans les chlorites par spectroscopie Müssbauer (57Fe): Fe3+ dans les chlorites du gisement de talc-chlorite de Trimouns (Pyrénées, France). Compte Rendu de l’Académie des Sciences de Paris, 312, série II, 13211326.Google Scholar
de Parseval, P., Moine, B., Fortuné|J.P. & Ferret, J. (1993) Fluid-mineral interactions at the origin of the Trimouns talc and chlorite deposit (Pyrénées, France). Pp. 205209 in: Current Research in Geology Applied to Ore Deposits. (Fenoll Hach- Ali, P., Torrès-Ruiz, J. & Gervilla, F., editors).Google Scholar
Rancourt, D.G. (1994a) Müssbauer spectroscopy of mineral. I. Inadequency of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. American Mineralogist, 21, 244249.Google Scholar
Rancourt, D.G. (1994b) Müssbauer spectroscopy of mineral. II. Problem of resolving cis and trans octahedral Fe2+ sites. American Mineralogist, 21, 250257.Google Scholar
Rancourt, D.G., Dang, M.Z. & Lalonde, A.E. (1992) Müssbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. American Mineralogist, 77, 3443.Google Scholar
Rancourt, D.G., McDonald, A.M., Lalonde, A.E. & Ping, J.Y. (1993) Müssbauer absorber thickness for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 17.Google Scholar
Rancourt, D.G., Ping, J.Y. & Berman, R.G. (1994) Müssbaue r spe ctros copy of minerals. II I . Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite-annite series. American Mineralogist, 21, 258267.Google Scholar
Ruan, H.D., Frost, R.L. & Kloprogge, J.T. (2001) Application of near-infrared spectroscopy to the study of alumina phases. Applied Spectroscopy, 55, 190196.CrossRefGoogle Scholar
Smyth, J.R., Khasanov, A.M., Miller, J.W., Pollak, H. & Li, Z. (1997) Crystal struct ure refinement and Müssbauer spectroscopy of an ordered triclinic clinochlore. Clays and Clay Minerals, 45, 544550.Google Scholar
Tiganis, B.E., Shanks, R.A. & Long, Y. (1996) Effects of Processing on the Microstructure, Melting Behavior and Equilibr ium Melt ing Tempe rature of Polypropylene. Journal of Applied Polymer Science, 59, 663671.3.0.CO;2-R>CrossRefGoogle Scholar
Wiewióra, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the united system of projection of chemical compositions: II. The chlorite group. Clay Minerals, 25, 8392.Google Scholar