Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:28:03.716Z Has data issue: false hasContentIssue false

Authigenic silicate minerals in phosphorites of the Negev, Southern Israel

Published online by Cambridge University Press:  09 July 2018

Y. Nathan
Affiliation:
Geological Survey of Israel, 30 Malkhe Yisrael Street, 95 501 Jerusalem, Israel
D. Soudry
Affiliation:
Geological Survey of Israel, 30 Malkhe Yisrael Street, 95 501 Jerusalem, Israel

Extract

Phosphorites occur throughout the Negev, southern Israel, within the upper part of the Mishash Formation of Late Campanian age. These phosphorites are part of the Upper Cretaceous-Eocene Tethys phosphatic province. Two units can be differentiated in the Mishash Formation: a lower chert unit and an upper phosphatic unit (Nathan et al., 1979). In the upper unit, rich, economic phosphorite beds with more than 25% P2O5 alternate with chert beds and so-called ‘sterile intercalations’ which contain about 15% P2O5.

Clinoptilohte (Mumpton, 1960), a zeolite of the heulandite-clinoptilolite family, was identified from XRD patterns of air-dried and heated samples of the clay fraction from the insoluble residue (1-20% of the rock) of selected phosphatic samples from the Hor Hahar field, Negev, southern Israel. Clinoptilohte occurred mainly in the ‘sterile intercalations’. Inasmuch as clinoptilohte has not been identified in older formations in the Negev, it was presumed to be authigenic in the Mishash Formation.

Type
Notes
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, Z.S., Cathcart, J.B. & Young, E.J. (1964) Geology and geochemistry of the Bone Valley Formation and its phosphate deposit, West-Central Florida. Geol. Soc. Am., Ann. Meeting, Miami Beach, Guidebook to Field Trip 6, 68 pp.Google Scholar
Burnett, W.C. (1977) Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geol. Soc. Am. Bull. 88, 813823.2.0.CO;2>CrossRefGoogle Scholar
Capedecomme, L. (1953) Etude minéralogique des gites de phosphates alumineux de Thiès (Sénégal). C.R. XlXéme Congrés Géol. Inter. Alger. Section II, Fase. 11, 103117.Google Scholar
Chaabani, F. (1978) Les phosphorites de la coupe-type de Fount Selja (Metlaoui, Tunisie). Thèse de 3ème cycle, Université Louis Pasteur de Strasbourg. 131 pp.Google Scholar
Champetier, Y. (1977) L'environment margino-littoral et la valorisation des substances utiles. Bull. Soc. Géol. France XIX, 299305.Google Scholar
Coutre, R.A. (1969) Composition and origin of palygorskite-rich and montmorillonite-rich zeolite-containing sediments from the Pacific Ocean. Chem. Geol. 19, 113130.Google Scholar
D'Anglejan, B.F. (1967) Origin of marine phosphorites off Baja California, Mexico. Marine Geol. 5, 1544.Google Scholar
DeMaster, D.J. (1981) The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 17151732.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. 2nd edition. McGraw-Hill Inc., New York.Google Scholar
Harder, H. (1978) Synthesis of iron layer-silicate minerals under natural conditions. Clays Clay Miner. 26, 6572.Google Scholar
Hein, J.R., Yeh, H.W. & Alexander, E. (1979) Origin of iron-rich montmorillonite from the manganese nodule belt of the North Equatorial Pacific. Clays Clay Miner. 27, 185194.Google Scholar
Kolodny, Y., Sass, E. & Nathan, Y. (1965) Porcellanite in the Mishash Formation, Negev, Southern Israel. J. Sed. Petrol. 35, 454463.Google Scholar
Lisitzin, A.P. (1972) In: Sedimentation in the World Ocean (Rodolfo, K. S., editor). Soc. Econ. Paleo. Min. Spec. Pubi. 17. Google Scholar
McKelvey, V.E. (1967) Phosphorite deposits. U.S. Geol. Surv. Bull. 1252-D, 21 pp.Google Scholar
Mosser, C. (1980) Elude géochimique de quelques éléments traces dans les argiles des altérations et des sédiments. Thése Sci., Strasbourg, 222 pp.Google Scholar
Mumpton, F.A. (1960) Clinoptilolite redefined. Am. Miner. 45, 351369.Google Scholar
Nathan, Y. (1966) The clay mineralogy of the Upper Cretaceous in the Northern Negev. Proc. Int. Clay Conj. Jerusalem 1, 145157.Google Scholar
Nathan, Y. & Flexer, A. (1977) Clinoptilolite, paragenesis and stratigraphy. Sedimentology 24, 845855.CrossRefGoogle Scholar
Nathan, Y., Shiloni, Y., Roded, R., Gal, I. & Deutsch, Y. (1979) The geochemistry of the northern and central Negev phosphorites (Southern Israel). Geol. Surv. Israel Bull. 73, 41 pp.Google Scholar
Riggs, S.R. (1979) Phosphorite sedimentation in Florida—A model phosphogenic system. Econ. Geol. 74, 285314.Google Scholar
Rooney, T.P. & Kerr, P.F. (1964) Clinoptilolite: a new occurrence in North Carolina phosphorite. Science 144, 1453.Google Scholar
Sassi, S. & Jacob, G. (1972) Découverte de clinoptilolite dans le bassin phosphaté de Metlaoui (Tunisie). C.R. Acad. Sci. Paris 274, 11281131.Google Scholar
Sommer, F. (1972) Néogènese de clinoptilolite dans l'Eocène et l'Oligocène de Casamance (Sénégal). Sci. Géol. Bull. Strasbourg 25, 251258.Google Scholar
Soudry, D. (1980) Geological survey of phosphorites in Nahal Shilhav—Har Omer and Har Nishpeh region (in Hebrew). Isr. Geol. Surv. Rep. 596/80, 14 pp.Google Scholar
Soudry, D., Moshkovitz, S. & Ehrlich, A. (1980) Occurrence of siliceous fossils (diatoms, silicoflagellates and sponge spicules) in the Campanian Mishash Formation, Southern Israel. Eclog. Geol. Helv. 74/1, 117123.Google Scholar
Trauth, N., Paquet, H., Lucas, J. & Millot, G. (1967) Les montmorillonites des vertisols lithomorphes sont ferrifères: conséquences géochimiques et sédimentologiques. C.R. Acad. Sci. Paris 264, 15771579.Google Scholar
Wassef, A.S. (1977) On the results of geological investigations and ore reserves calculation of Abu Tartar phosphorite deposit. Annals Geol. Survey Egypt VII, 260.Google Scholar