Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T02:48:04.535Z Has data issue: false hasContentIssue false

An unusual occurrence of palygorskite from Montestrutto, Sesia-Lanzo zone, internal Western Alps (Italy)

Published online by Cambridge University Press:  09 July 2018

R. Giustetto*
Affiliation:
Dipartimento di Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, via Valperga Caluso 35, I-10125 Torino, Italy
R. Compagnoni
Affiliation:
Dipartimento di Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, via Valperga Caluso 35, I-10125 Torino, Italy

Abstract

An unusual occurrence of palygorskite was found near Montestrutto, lower Val d'Aosta (Italy), within an eclogite-facies leucogneiss of the Sesia-Lanzo zone. Under the optical microscope the mineral appears as a felt of fibres hundreds of μm long and a few μm thick. SEM observation proved each filament to be a bundle of smaller but remarkably long fibres (length mostly 15–20 μm and thickness <1 μm). EDS and TGA showed a water content [zeolitic H2O ( ≅ 6%) + structural OH2 (≅8%) + framework OH (≅2%) ≅l6 wt.%] lower than average (≅20 wt.%). Structure refinement by the Rietveld method confirmed the clay dioctahedral character and coexistence of two polymorphs, monoclinic [77.4(4)%] and orthorhombic [22.6(6)%], the latter showing anomalous variations of some cell parameters [c shortens to 5.138(3) and a lengthens to 12.903(7) Å]. The high crystallinity of this palygorskite suggests that it formed under low-T hydrothermal conditions due to interaction between Mg-rich hydrous fluids, derived from mantle ultramafics, and Al-rich continental rocks. Predominance of unusually long fibres (>5 μm) causes the Montestrutto palygorskite to be potentially carcinogenic.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Futaisi, A., Jamrah, A., Al-Rawas, A. & Al-Hanai, S. (2007) Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman). Environmental Geology, 51, 13171327.CrossRefGoogle Scholar
Artioli, G. & Galli, E. (1994) The crystal structures of orthorhombic and monoclinic palygorskite. Material Science Forum, 166, 647652.Google Scholar
Artioli, G., Galli, E., Burattini, E., Cappuccio, G. & Simeoni, S. (1994) Palygorskite from Bolca, Italy: a characterization by high-resolution synchrotron radiation powder diffraction and computer modelling. Neues Jahrbuch fur Mineralogie Monatshefte, 217—229.Google Scholar
Birsoy, R. (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays & Clay Minerals, 50, 6, 736-745.Google Scholar
Bradley, W.F. (1940) The structural scheme of attapulgite. American Mineralogist, 25, 405410.Google Scholar
Caillere, S. (1934) Analysis of palygorskite from Taodeni. Comptes Rendus de VAcademie des Sciences, Paris, 198, 17951798.Google Scholar
Caillere, S. (1951) Palygorskite from Tafraout. Comptes Rendus de VAcademie des Sciences, Paris, 233, 697698.Google Scholar
Caillere, S. & Henin, S. (1961) Palygorskite. Pp. 343353 in: X-ray Identification and Crystal Structure of Clay Mineral. (G.W. Brindley & G. Brown, editors). Mineralogical Society, Monogaph 5, London.Google Scholar
Chiari, G., Giustetto, R. & Ricchiardi, G. (2003) Crystal structure refinements of palygorskite and Maya blue from molecular modelling and powder synchrotron diffraction. European Journal o. Mineralogy, 15, 21-33.Google Scholar
Chisholm, J.E. (1990) An X-ray powder-diffraction study of palygorskite. The Canadian Mineralogist, 28, 329339.Google Scholar
Chisholm, J.E. (1992) Powder-diffraction patterns and structural models for palygorskite. The Canadian Mineralogist, 30, 6173.Google Scholar
Christ, C.L., Hathaway, J.C., Hostetler, P.B. & Shepard, A.O. (1969) Palygorskite: new X-ray data. American Mineralogist, 54, 198205.Google Scholar
Chryssikos, G.D., Gionis, V., Kacandes, G.H., Stathopoulou, E.T., Mercedes, S., Garcia-Romero, E. & Sanchez del Rio, M. (2009) Octahedral cation distribution in palygorskite. American Mineralogist, 94, 200203.Google Scholar
Corma, A., Mifsud, A. & Sanz, E. (1990) Kinetics of the acid leaching of palygorskite: influence of the octahedral sheet composition. Clay Minerals, 25, 197205.CrossRefGoogle Scholar
Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. Journal of Applied Crystallography, 19, 267272.Google Scholar
Drits, V.A. & Sokolova, G.V. (1971) Structure of palygorskite. Soviet Physics, Crystallography, 16, 183185.Google Scholar
Ferraris, G., Makovicky, E. & Merlino, S. (2004) Crystallography of modular materials. lUCr Monographs on Crystallography, 15, Oxford University Press, 370 pp.Google Scholar
Finger, L.W., Cox, D.E. & Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial convergence. Journal of Applied Crystallography, 27, 892900.Google Scholar
Fisher, R.B., Thome, R.L. & Van Cott, C. (1945) Palygorskite: a possible asbestos substitute. U.S.D.I. Bureau of Mines Information Circular, no. 7313, 1-5.Google Scholar
Galan, E. & Carretero, M.I. (1999) A new approach to compositional limits for sepiolite and palygorskite. Clays and Clay Minerals, 47, 399409.CrossRefGoogle Scholar
Garcia-Romero, E., Suarez Barrios, M. & Bustillo Revuelta, M.A. (2004) Characteristic of a Mgpalygorskite in Miocene rocks (Madrid Basin, Spain). Clays and Clay Minerals, 52, 486494.Google Scholar
Garcia-Romero, E., Suarez, M., Santaren, J. & Alvarez, A. (2007) Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal. Clays and Clay Minerals, 55, 606617.Google Scholar
Gionis, V., Kacandes, G.H., Kastritis, I.D. & Chryssikos, G.D. (2007) Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite. Clays and Clay Minerals, 55, 543553.Google Scholar
Giustetto, R. & Chiari, G. (2004) Crystal structure refinement of palygorskite from neutron powder diffraction. European Journal o. Mmeralogy, 16, 521-532.Google Scholar
Governa, M., Valentino, M., Visona, I., Monaco, F., Amati, M., Scancarello, G. & Scansetti, G. (1995) In vitro biological effects of clay mineral advised as substitutes for asbestos. Cell Biology and Toxicology, 11, 237249.CrossRefGoogle ScholarPubMed
Grim, R.E. (1968) Clay Mineralogy, 2 nd edition, McGraw-Hill, New York.Google Scholar
Guggenheim, S. & Eggleton, R.A. (1988) Crystal chemistry, classification and identification of modulated layer silicates. Reviews in Mineralogy, 19. 675-725.Google Scholar
Giiven, N., Caillerie, J.B.E. & Fripiat J.J. (1992) The coordination of aluminum in the palygorskite structure. Clays and Clay Minerals, 40, 457461.Google Scholar
Hayashi, H., Otsuka, R. & Imai, N. (1969) Infrared study of sepiolite and palygorskite on heating. American Mineralogist, 54, 16131624.Google Scholar
Heller-Kallai, L. & Rozenson, I. (1981) Mossbauer studies of palygorskite and some aspects of palygorskite mineralogy. Clays and Clay Minerals, 29, 226232.CrossRefGoogle Scholar
Heystek, H. & Schmidt, E.R. (1954) Palygorskite from Dornboom. Transactions of the Geological Society of South Africa, 56, 99115.Google Scholar
IARC—International Agency for Research on Cancer, World Health Organization (1997) Palygorskite(attapulgite). Pp. 245-262 in: IARC Monographs on the evaluation of carcinogenic risks to humans; Silica, some silicates, coal dust andparaaramidfibrils. 68, IARC Press.Google Scholar
Imai, N. & Otsuka, R. (1984) Sepiolite and palygorskite in Japan. Pp. 211232 in: Palygorskite-Sepiolite Occurrences, Genesis and Use. (A. Singer & E. Galan, editors). Developments in Sedimentology, 37. Elsevier, Amsterdam.Google Scholar
Imai, N., Otsuka, R., Kashide, H. & Hayashi, R. (1969) Dehydration of palygorskite and sepiolite from Kuzuu district, Tochigi Prefecture, central Japan. Pp. 99108 in. Proceedings of the International Clay Conference, Tokyo, 1 (L. Heller, editor).Google Scholar
Jones, B.F. & Galan, E. (1988) Palygorskite and sepiolite. Pp. 631674 in: Hydrous Phyllosilicates, Exclusive of Mica. (S.W. Bailey, editor) Reviews in Mineralogy, 19, Mineralogical Society of America, Washington.CrossRefGoogle Scholar
Krekeler, M.P.S. & Guggenheim, S. (2009) Defects in micro structure in palygorskite-sepiolite minerals: a transmission electron microscopy (TEM) study. Applied Clay Science, 39, 98105.CrossRefGoogle Scholar
Larson, A.C. & Von Dreele, R.B. (2007) GSAS - General Structure Analysis System. Los Alamos National Laboratory Report, No. LAUR 86-748.Google Scholar
March, A. (1932) Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation. Zeitschrift fur Kristallographie, 81, 285297.Google Scholar
Martin Vivaldi, J.L. & Fenoll Hach-Ali, P. (1970) Palygorskite and sepiolite (hormites). Pp. 553573 in: The Differential Thermal Analysis of Clay. (R.C. Mackenzie, editor) Academic Press, London.Google Scholar
Mifsud, A., Rautureau, M. & Fornes, V. (1978) Etude de l'eau dans la palygorskite a l'aide des analyses thermiques. Clays and Clay Minerals, 13, 367374.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Mineral. (A.C.D. Newman, editor). Mineralogical Society, London.Google Scholar
Nolan, R.P., Langer, A.M. & Herson, G.B. (1991) Characterisation of palygorskite specimens from different geological locales for health hazard evaluation. British Journal of Industrial Medicine, 48, 463475.Google Scholar
Post, J.E. & Heaney PJ. (2008) Synchrotron powder diffraction study of the structure and dehydration behavior of palygorskite. American Mineralogist, 93, 667675.Google Scholar
Preisinger, A. (1963) Sepiolite and related compounds: its stability and application. Clays and Clay Minerals, 10, 365371.CrossRefGoogle Scholar
Renier, A., Fleury L, Monchaux, G., Nebut, M., Bignon, J. & Jaurand, M.C. (1989) Toxicity of an attapulgite sample studied in vivo and in vitro. IARC Science Publications, 90, 180184.Google Scholar
Serna, C, Van Scoyoc, G.E. & Ahlrichs, J.L. (1977) Hydroxyl groups and water in palygorskite. American Mineralogist, 62, 784792.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies in halides and chalcogenides. Ada Crystallographica, A32, 751767.Google Scholar
Singer, A. & Galan, E. (1984) Palygorskite-sepiolite occurrences, genesis and uses. Pp. 333343 in: Palygorskite-Sepiolite Occurrences, Genesis and Use. (A. Singer & E. Galan, editors). Developments in Sedimentology, 37, Elsevier, Amsterdam.Google Scholar
Suarez, M. & Garcia-Romero, E. (2006) FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Applied Clay Science, 31, 154163.Google Scholar
Thompson, P., Cox, D.E. & Hastings IB. (1987) Rietveld refinement of Debye-Scherrer synchrotron data from A12O3. Journal of Applied Crystallography, 20, 7983.Google Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.Google Scholar
Velde, B. (1985) Pp. 225-256 in: Clay Minerals: a Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, 40. Elsevier, Amsterdam.Google Scholar
Wagner, J.C., Griffiths, D.M. & Munday, D.E. (1987) Experimental study with palygorskite dusts. British Journal of Industrial Medicine, 44, 749763. Google Scholar