Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:05:38.743Z Has data issue: false hasContentIssue false

An ESR and calorimetric study of iron oolitic samples from the Northampton ironstone

Published online by Cambridge University Press:  09 July 2018

A. U. Gehring
Affiliation:
Institut für Geophysik, ETH-Hönggerberg, CH-8093 Zürich
R. Karthein
Affiliation:
Laboratorium für Physikalische Chemie der ETH, CH-8092 Zürich, Switzerland

Abstract

Electron spin resonance (ESR) spectroscopy and calorimetric methods were used to characterize conversion processes in multimineral samples from the Northampton ironstone (NIS) at temperatures between 25°C and 800°C. The beginning of the thermal conversion processes can be determined by the formation of asymmetric ESR spectra with g ≈ 2 at 250°C. The breakdown of the berthierine structure between 250°C and 520°C is indicated by the disappearance of the hyperfine splitting in the Mn2+ spectrum and the formation of magnetite. The decomposition of siderite and calcite was found by calorimetric methods at 580°C and 700°C, respectively. The hematite formation between 550°C and 800°C is explained by the decomposition of siderite but also by the oxidation of previously formed magnetite. The occurrence of hematite as the dominant ferric oxide at 800°C signifies the end of the conversion process of the major mineral phases in the NIS samples.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandyopadhyay, A.K., Zarzycki, J., Auric, P. Chappert, J. (1980) Magnetic properties of basalt glass and glass- ceramics. J. Non-Crystalline Solids , 40, 353–368.Google Scholar
Bensch, W., Hug, P., Emmenegger, R., Reller, A. Oswald, H.R. (1987) Preparation, crystal structure and thermal behaviour of ethylenediammonium-molybdate. Mat. Res. Bull. , 22, 447-454.Google Scholar
Bhattacharyya, D.P. (1983) Origin of berthierine in ironstones. Clays Clay Miner. , 31, 173182.CrossRefGoogle Scholar
Brindley, G.W. (1982) Chemical compositions of berthierine– a review. Clays Clay Miner. , 10, 153–155.Google Scholar
Brindley, G.W. Youell, R.F. (1953) Ferrous chamosite and ferric chamosite. Mineral. Mag. , 30, 57–70.Google Scholar
Calas, G. (1988) Electron paramagnetic resonance. Pp. 513-571 in: Spectroscopic Methods in Mineralogy and Geology (F.C. Hawthorn, editor). Rev. Miner. , 18.Google Scholar
Chaikum, N. Carr, R.M. (1987) Electron spin resonance studies of halloysites. Clay Miner. , 22, 287–296.CrossRefGoogle Scholar
Dunlop, D.J. (1972) Magnetic mineralogy of unheated and heated red sediments by coercivity spectrum analysis. Roy. Astronom. Soc. Geophys. J. 21 , 3755.Google Scholar
Escoubes, M. Karchoud, M.M. (1977) Contribution a Tetude du comportment des ions fer au cours de la deshydroxylation des mineraux argilleux. Bull. Soc. Fr. Ceram. , 114, 43–55.Google Scholar
Gehring, A.U. (1990) Diagenesis of ferriferous phases in the Northampton ironstone in the Cowthick quarry near Corby (England). Geol. Mag. , 127, 169–176.Google Scholar
Griscom, D.L. (1984) Ferromagnetic resonance of precipitated phases in natural glasses. J. Non-Crystalline Solids , 67, 81–118.Google Scholar
Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitution and external surface properties. Clay Miner. , 15, 321–335.Google Scholar
Hallam, A. Bradshaw, M. J. (1979) Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. J. Geol. Soc. Lond. , 136, 157–164.CrossRefGoogle Scholar
Hollingworth, S.E. Taylor, J.H. (1951) The Northampton Sand Ironstone. Mem. Geol. Surv. UK, 209pp.Google Scholar
Lowrie, W. Heller, F. (1982) Magnetic properties of marine limestones. Rev. Geophys. Space Phys. , 20, 171192.Google Scholar
McBride, M.B. (1979) Chemisorption and precipitation of Mn2+ at CaCO3 surfaces. Soil Sci. Soc. Am. J. , 43, 693698.Google Scholar
Meads, R.E. Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. , 10, 313–345.Google Scholar
Pinheiro, E.A., De Abreu Filho, P.P., Galenbeck, F., Da Silva, E.C. Vargas, H. (1987) Magnetite crystals formation from iron(III) hydroxides acetate. An ESR study. Langmuir , 3, 445–448.Google Scholar
Taylor, J.H. (1949) Petrology of the Northampton Sand Ironstone formation. Mem. Geol. Surv. UK, 111pp.Google Scholar
Taylor, J.H. (1950) Sedimentation problems of the Northampton Sand Ironstone. Proc. Yorkshire Geol. Soc. , 28, 74–85.Google Scholar
Watanabe, T., Shimizu, H., Nagasawa, K., Masuda, A. Saito, H. (1987) 29Si- and 29AI-MAS/NMR study of the thermal transformations of kaolinite. Clay Miner. , 22, 33–48 CrossRefGoogle Scholar
Ziethen, M. (1989) Mössbauer- and ESR-Untersuchungen an eisendotierten Zeolithen. PhD thesis, Univ. Liibeck.Google Scholar