Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:26:51.498Z Has data issue: false hasContentIssue false

Allophane in weathered zones of barite ore deposits (Vide de Alba and San Blas, Zamora, Spain): mineralogy and genesis

Published online by Cambridge University Press:  09 July 2018

L. Perez del Villar
Affiliation:
Departamento de Técnicas Geológicas del CIEMAT, 28040 Madrid
M. C. Moro
Affiliation:
Departamento de Geología de la Universidad de Salamanca, 37008 Salamanca, Spain
M. L. Cembranos
Affiliation:
Departamento de Geología de la Universidad de Salamanca, 37008 Salamanca, Spain

Abstract

The allophane studied occurs in the weathered zones of the barite-sulphide-bearing dolomitic levels, interbedded in the barite ore deposits of Vide de Alba and San Bias (Province of Zamora). These ore deposits are interstratified in the Silurian-Devonian sulphide bearing volcano sedimentary materials of the Alcañices Synform. The allophanic samples have been studied by polarizing microscopy, SEM, XRD, DTA, TG, IRS, EMA and chemical analyses, the last after dissolving the samples by acid (HF + HNO3 + 3HCl + H3BO3) and alkaline digestion (0·5 m NaOH). It is suggested that allophane originates from the reaction of acid solutions released during the weathering of sulphides with acid volcanoclastic rocks. Silica-alumina gels were deposited in holes formed during earlier dissolution of the dolomite associated with the barite ores. Later processes of desilication partially transform allophane to gibbsite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G. (1955) Report of the clay minerals group sub-committee on nomenclature of clay minerals. Clay Miner. Bull., 2, 294–302.Google Scholar
Caillere, S., Henin, S. & Rautureau, M. (1982) Mineralogie des Argiles. Vol. 2. Classification et Nomenclature. Masson et Cie, Paris.Google Scholar
Chukhrov, F.V., Rudnitskaya, H.S., Moleva, V.A. & Ermilova, L.P. (1965) Phosphate-allophanes. Izv. Akad. Nauk. S.S.S.R., Ser. Geoi, 30, 51–57.Google Scholar
Evans, L.J. & ChesworthW. (1985) The weathering of basalt in an arctic environment. Pp. 7785 in: Volcanic Soilsy Weathering and Landscape Relationships of Soils on Tephra and Basalt.(E. Fernandez Caldas & Yaalon, D.H., editors). Catena Verlag, Cremlingen.Google Scholar
Hashimoto, I. & Jackson, M.L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner., 7, 102–113.Google Scholar
Lukashev, K.I. (1958) Lithology and Geochemistry of the Weathering Crust. Israel Program of Scientific Translations, Jerusalem.Google Scholar
Mackenzie, R.C. (1970) Differential Thermal Analysis. Vol. 1. Fundamental Aspects. Academic Press, London.Google Scholar
Moro, M.C. (1980) Los yacimientos de barita asociados al sinclinorio de Alcafiices-Carbajales de Alba y sus metodos de prospeccion. PhD thesis, Univ. Salamanca, Spain.Google Scholar
Moro, M.C. (1981) Las mineralizaciones de barita y sulfuros asociados al sinclinorio de Alcafiices-Carbajales de Alba. Rev. Real. Acad, de Cienc. Exactas, Fisicas y Naturales. Programa Intemacional de Correlacion Geologica (PICG), 281-298.Google Scholar
Moro, M.C. & Arribas, A. (1980) Procesos de sedimentacion y diagenesis en los yacimientos sedimentarios de barita de la provincia de Zamora. Rev. Inst. Invest. Geol. Univ. Barcelona,, 34, 325–338.Google Scholar
Moro, M.C., Arribas, A. & Cembranos M (1981) Caracteres geoquiYnicos de la mineralizaciones sedimentarias de bario de la provincia de Zamora. Rev. Real. Acad, de Cienc. Exactas, Fisicas y Naturales.Programa Intemacional de Correlacion Geologica (PIGC), 299324.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals(Newman, A.C.D., editor). Mineralogical Society, London.Google Scholar
Parfitt, R.L. & Wilson, A.D. (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Pp. 1-8 in: Volcanic Soils, Weathering and Landscape Relationships of Soils on Tephra and Basalt.(Fernandez Caldas, E. & Yaalon, D.H., editors). Catena Verlag, Cremlingen.Google Scholar
Parfitt, R.L. (1990) Allophane in New Zealand—A review. Aust. J. Soil Res., 28, 343–360.Google Scholar
Poole, F.G., Moro, M.C., Lopera, E. & Arribas, A. (1990) Setting and origin of stratiform barite and associated rocks of the Hercynian Orogen in Western Spain. Petroleum Geol.(in press).Google Scholar
Quantin, P. (1985) Characteristics of the Vanuatu andosois. Pp. 99-105 in: Volcanic Soiis, Weathering and Landscape Relationships of Soils on Tephra and Basalt.(Fernandez Caldas, E. & Yaalon, D.H., editors). Catena Verlag, Cremlingen.Google Scholar
Quantin, P., Dabin, B., Bouleau, A., Lulu, L. & Bindini, D. (1985) Characteristics and genesis of two andosois in central Italy. Pp. 107117 in: Volcanic Soils, Weathering and Landscape Relationships of Soils on Tephra and Basalt.(Fernández Caldas, E. & Yaalon, D.H., editors). Cantena Verlag, Cremlingen.Google Scholar
Rull, F., López, F., Arana, F., Alia, J., Prieto, C. & Acosta, A. (1989) Caracterizacion de algunas celestinas españolas por espectroscopia Raman e I.R. Bol. Soc. Esp. Miner., 12, 169–178.Google Scholar
Sieffermann, G. & Millot, G. (1969) Equatorial and tropical weathering of recent basalts from Cameroon: allophane, halloysite, metahalloysite, kaolinite and gibbsite. Proc. Int. Clay Conf. Tokyo,, 1, 417430.Google Scholar
Sieffermann, G., Besnus, Y. & Millot, G. (1968) Evolution et degradation des phyllites dans les vieux soils ferralliticjues sur basaltes de Centre-Cameroon. Sd. Sol. 2, 105117.Google Scholar
Smykatz-Kloss, W. (1974) Differential Thermal Analysis. Application and Results in Mineralogy. Springer-Verlag, Berlin.Google Scholar
Stevens, K.F. & Vucetich, G.C. (1985) Weathering of Upper Quaternary tephras in New Zealand. 2, Clay minerals and their climatic interpretation. Chem. Geol., 53, 237–247.CrossRefGoogle Scholar
Tsuzuki, Y. & Nagasawa, K. (1960) A study of the exothermic reaction of allophane. Adv. Clay Sci., 2, 377–384.Google Scholar
Wada, K., Henmi, T., Yoshinaga, N. & Patterson, S.H. (1972) Imogolite and allophane formed in saprolite of basalt on Mavi, Hawai. Clays Clay Miner., 20, 375–380.Google Scholar
Wada, K. (1977) Allophane and Imogolite. Pp. 603-638 in: Minerals in Soil Environments.(Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. of America, Madison, Wisconsin.Google Scholar
White, W.A. (1953) Allophanes from Lawrence County, Indiana. Am. Miner., 38, 634–642.Google Scholar
Yoshinaga, N. & Aomine, S. (1962a) Allophane in some Ando Soils. Soil Sci. Plant. Nutr., 8, 6–13.Google Scholar
Yoshinaga, N. & Aomine, S. (1962b) Imogolite in some Ando Soils. Soil. Sci. Plant. Nutr., 8, 22–29.Google Scholar