Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T13:56:18.477Z Has data issue: false hasContentIssue false

Adsorption-desorption of sotalol hydrochloride by Na-montmorillonite

Published online by Cambridge University Press:  09 July 2018

M. Sánchez-Camazano
Affiliation:
Centro de Edafología y Biología Aplicada, Apdo. 257, 37008 Salamanca
M. J. Sánchez-Martín
Affiliation:
Centro de Edafología y Biología Aplicada, Apdo. 257, 37008 Salamanca
M. T. Vicente
Affiliation:
Departamento de Farmacia Galénica, Facultad de Farmacia Salamanca, Spain
A. Dominguez-Gil
Affiliation:
Departamento de Farmacia Galénica, Facultad de Farmacia Salamanca, Spain

Abstract

The interaction of montmorillonite with sotalol hydrochloride (4-(1-hydroxy-N-isopropylaminoethyl) methane sulfanilide) was studied by means of adsorption isotherms, XRD and IR spectroscopy. The amount of sotalol adsorbed depended on pH, the maximum amount adsorbed (0·56 mEq g−1) being considerably less than the exchange capacity of the mineral (0·80 mEq g−1). XRD and IR data revealed that the sotalol is adsorbed into the interlayer space, forming a monolayer complex with a d001 spacing of 17·7 Å, and that the mechanisms involved are cation exchange and ion-dipole interactions. Experiments on the in vitro desorption of the drug from the sotalol-montmorillonite complex indicated that desorption is affected by pH, by the salt concentration of the electrolyte, and by the elimination rate of the desorbed organic cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chapman, H.D. (1965) Cation exchange capacity. Pp. 891901 in: Methods of Soil Analysis 2 (Black, C. A., editor). American Society of Agronomy, Madison, Wisconsin, USA.Google Scholar
Garrett, E.R. & Schnelle, K. (1971) Separation and spectrofluorometric assay of the beta-adrenergic sotalol from blood and urine. J. Pharm. Sci. 60, 833839.Google Scholar
Greenland, D.J. & Quirk, J.P. (1962) Adsorption of 1-n-alkylpyridinium bromides by montmorillonite. Clays Clay Miner. 9, 484499.Google Scholar
Grim, R.E. (1962) Applied Clay Mineralogy, pp. 372373. MacGraw-Hill, New York.Google Scholar
Grim, R.E. & Guven, N. (1978) Bentonites: Geology, Mineralogy, Properties and Uses, p. 234. Elsevier, Amsterdam.Google Scholar
Jordan, J.W. (1949) Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Colloid Chem. 53, 292306.Google Scholar
Jordan, J.W., Hook, B.J. & Finlayson, C.M. (1950) Organophilic bentonites II. Organic liquids gels. J. Phys. Colloid Chem. 54, 11961208.Google Scholar
Kittrick, J.A. (1977) Mineral equilibria and the soil systems. Pp. 124 in: Minerals in Soil Environments (Dixon, J. B. & Weed, S. B., editors). Soil Science of America, Madison, Wisconsin, USA.Google Scholar
Robinson, J.R. (1978) Sustained and Controlled Release Drug Delivery Systems. Marcel Dekker, New York.Google Scholar
Russell, J.D., Cruz, M. & Withe, J.L. (1968) The adsorption of 3-aminotriazole by montmorillonite. J. Agric. Food Chem. 16, 2124.Google Scholar
Stempel, E. (1966) Patents for prolonged action dosage forms. Drug. Cosm. 98, 4484.Google Scholar
Theng, B.K.G. (1974) The Chemistry of Clay-Organic Reactions, pp. 211230. Adam Hilger, London.Google Scholar
Vicente Hernandez, M.T. (1981) Estudio de la interacción de beta-bloqueantes adrenérgicos con montmorillonita. PhD Thesis, Univ. Salamanca, Spain.Google Scholar