Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:22:47.992Z Has data issue: false hasContentIssue false

Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I. XRD and multi-scale chemical approaches

Published online by Cambridge University Press:  09 July 2018

A. Gaudin*
Affiliation:
CNRS-UMR 6112, Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et Techniques, Université de Nantes, BP 92208, 44322 Nantes Cedex 03 CEREGE, CNRS-UMR6635, Université Aix-Marseille III, Europôle Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
O. Grauby
Affiliation:
CRMC2, CNRS-UPR 7251, Campus de Luminy, Case 913, F-13288 Marseille Cedex 09
Y. Noack
Affiliation:
CEREGE, CNRS-UMR6635, Université Aix-Marseille III, Europôle Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
A. Decarreau
Affiliation:
CNRS-UMR 6532, Laboratoire HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
S. Petit
Affiliation:
CNRS-UMR 6532, Laboratoire HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
*

Abstract

Lateritic weathering profiles developed on serpentinized peridotites of Murrin Murrin (Western Australia) exhibit thick smectite zones (10–15 m). The smectites from plasma and fissures were characterized by XRD, chemical analyses (ICP-AES, SEM-EDX and TEM-EDX) and Mo¨ssbauer spectroscopy. These Fe-rich smectites, previously described as nontronites, are in fact more complex. Their layer charges originate from both the tetrahedral and octahedral sheets. Plasma and notably fissure smectites exhibit, from the bulk sample scale to the particle scale, large and continuous Al for (Fe+Cr) substitutions, covering a chemical gap previously described for dioctahedral smectites ranging between nontronite and beidellite end-members. Lastly, they exhibit an octahedral occupancy slightly above 2, due to a low (Mg+Ni) trioctahedral contribution. Thus, the smectites occurring in weathering profiles of ultrabasic rocks can have actual chemistries intermediate between four dioctahedral end-members (beidellite, nontronite, montmorillonite and previously rarely described ferric-montmorillonite) and a trioctahedral one ((Mg+Ni)-saponite).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badaut, D., Decarreau, A. & Besson, G. (1992) Ferripyrophyllite and related Fe3+-rich 2:1 clays in recent deposits of Atlantis II deep Red Sea. Clay Minerals, 27, 227–244.Google Scholar
Besnus, Y., Fusil, G., Janot C, Pinta, M. & Sieffermann, G. (1975) Characteristics of some weathering products of chromitic ultrabasic rocks in Bahia State, Brazil: nontronites, chlorites and chromiferous talc. Pp. 27–34 in: Proceedings of the International Clay Conference 1975, Mexico (Bailey, S.W., editor), Applied Publishing, Illinois, USA.Google Scholar
Bosio, N.J., Hurst, V.J. & Smith, R.L. (1975) Nickeliferous nontronite, a 15 Å garnierite at Niquelandia, Goias, Brazil. Clays and Clay Minerals, 23, 400–403.Google Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177–186.Google Scholar
Brindley, G.W. & Souza, J.V. de (1975) Nickel-containing montmorillonites and chlorites from Brazil, with remarks on schuchardtite. Mineralogical Magazine, 40, 141–152.CrossRefGoogle Scholar
Buatier, M.D., Ouyang, K. & Sanchez, J.P. (1993) Iron in hydrothermal clays from the Galapagos Spreading Centre mounds: consequences for the clay transition mechanism. Clay Minerals, 28, 641–655.Google Scholar
Calas, G., Manceau, A., Novikoff, A. & Boukili, H. (1984) Comportement du chrome dans les minéraux d’altération du gisement de Campo Formoso (Bahia, Brésil). Bulletin Minéralogique, 107, 755–766.Google Scholar
Camuti, K.S. & Gifford, M.G. (1997) Mineralogy of the Murrin Murrin nickel laterite deposit, Western Australia. Pp. 407–410 in: Mineral Deposits: Research and Exploration–Where do they Meet? (Papunen, H., editor). Proceedings of the Biennial SGA Meeting, Balkema, A.A., Rotterdam.Google Scholar
Cardile, C.M. & Johnston, J.H. (1985) Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays and Clay Minerals, 33, 295–300.CrossRefGoogle Scholar
Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. AtomicEnergy Review, 18, 73–124.Google Scholar
Colin, F., Noack, Y., Trescases, J.J. & Nahon, D. (1985) L’altération latéritique débutante des pyroxénites de Jacuba, Niquelandia (Brésil). Clay Minerals, 20, 93–113.Google Scholar
Colin, F., Nahon, D., Trescases, J.J. & Melfi, A. (1990) Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil: the supergene behavior of nickel. Economic Geology, 85, 1010–1023.CrossRefGoogle Scholar
Decarreau, A., Colin, F., Herbillon, A., Manceau, A., Nahon, D., Paquet, H., Trauth-Badaut, D. & Trescases, J.J. (1987) Domain segregation in Ni-Fe-Mg-smectites. Clays and Clay Minerals, 35, 1–10.Google Scholar
Desprairies, A. (1983) Relation entre le paramètre b des smectites et leur contenu en fer et magnesium. Application à l’étude des sédiments. Clay Minerals, 18, 165–175.Google Scholar
Delvigne, J., Bisdom, E.B.A., Sleeman, J. & Stoops, G. (1979) Olivines, their pseudomorphs and secondary products. Pedologie XXIX, 3, 247–309.Google Scholar
Ducloux, J., Meunier, A. & Velde, B. (1976) Smectite, chlorite and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body Massif Central, France. Clay Minerals, 11, 121–134.CrossRefGoogle Scholar
Elias, M., Donaldson, M.J. & Giorgetta, N. (1981) Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia. Economic Geology, 76, 1775–1783.Google Scholar
Esson, J. & Santos, L.C.S. dos (1978) Chemistry and mineralogy of a section through lateritic nickel deposit at Liberdade, Brazil. Institution of Mining and Metallurgy, Sect. B, 53–60.Google Scholar
Fontanaud, A. (1982) Les faciès d’altération supergène des roches ultrabasiques : étude de deux massifs de lherzolite (Pyrénées, France). PhD thesis, Univ. Poitiers, France.Google Scholar
Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack, Y. & Borschneck, D. (2005) Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II - Spectroscopic (IR and EXAFS) approaches. Clay Minerals (submitted).CrossRefGoogle Scholar
Golightly, J.P. (1979) Nickeliferous laterites: a general description. Pp. 3–23 in: International Laterite Symposium (New Orleans) (Evans, D.J.I., Shoemaker, R.S. & Veltman, H., editors). American Institute of Mining, Metallurgy and Petroleum Engineering and the Society of Mining Engineers, New York, USA.Google Scholar
Golightly, J.P. (1981) Nickeliferous laterite deposits. Economic Geology, 75, 710–735.Google Scholar
Goodman, B.A., Russel, J.D., Fraser, A.D. & Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.Google Scholar
Güven, N. (1988) Smectites. Pp. 497–559 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Hallberg, J.A. (1985) Geology and Mineral Deposits of the Leonara-Laverton area, Northeastern Yilgarn Block, Western Australia. Hesperian Press, Carlisle, WA, Australia.Google Scholar
Hofmann, U. & Klemen, R. (1950) Vrelust der Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift fur Anorganische und Allgemeine Chimie, 262, 95–99.Google Scholar
Keeling, J.L., Raven, M.D. & Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, south Australia. Clays and Clay Minerals, 48, 537–548.Google Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronite and Fe-rich smectites. Clay Minerals, 34, 579–599.Google Scholar
Kühnel, R.A., Roorda, H.J. & Steensma, J.J.S. (1978) Distribution and partitioning of elements in nickeliferous laterites. Bulletin du Bureau de Recherche Géologique et Minière, 3, 191–206.Google Scholar
Lanson, B. (1993) DECOMPXR, X-ray Decomposition Program. ERM, Poitiers, France.Google Scholar
Lear, P.R., Komadel, P. & Stucki, J.W. (1988) Mössbauer spectroscopic identification of iron oxides in nontronite from Hohen Hagen, Federal Republic of Germany. Clays and Clay Minerals, 36, 376–378.Google Scholar
Linchenat, A. & Shirokova, I. (1964) Individual characteristics of the nickeliferous iron (laterite) deposits of the northeastern part of Cuba (Pinares de Mayari, Nicaro and Moa). Proceedings of the XXII International Geological Congress, India, 14, 169–187.Google Scholar
Ma, C., FitzGerald, J.D., Eggleton, R.A. & Llewellyn, D.J. (1998) Analytical electron microscopy in clays and other phyllosilicates: Loss of elements from a 90 nm stationary beam of 300 keV electrons. Clays and Clay Minerals, 46, 301–316.Google Scholar
Manceau, A. & Calas, G. (1985) Heterogeneous distribution of nickel in hydrous silicates from New Caledonia ore deposits. American Mineralogist, 70, 549–558.Google Scholar
Manceau, A. & Calas, G. (1986) Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study. Clay Minerals, 21, 341–360.Google Scholar
Martin, F., Micoud, P., Delmotte, L., Marichal C, Le Dred, R., Parseval, P. de, Mari, A., Fortuné, J.P., Salvi, S., Béziat, D., Grauby, O. & Ferret, J. (1999) The structural formula of talc from the Trimouns deposit, Pyrenées, France. The Canadian Mineralogist, 37, 997–1006.Google Scholar
Monti, R. & Fazakerley, V. (1996) The Murrin Murrin nickel cobalt deposit. Pp. 191–196 in: Proceedings Nickel’96. The Australian Institute of Mining and Metallurgy, Melbourne.Google Scholar
Nahon, D. & Colin, F. (1982a) Chemical weathering of orthopyroxenes under lateritic conditions. American Journal of Science, 282, 1232–1243.Google Scholar
Nahon, D., Colin, F. & Tardy, Y. (1982b) Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Minerals, 17, 339–348.Google Scholar
Nahon, D., Paquet, H. & Delvigne, J. (1982c) Lateritic weathering of ultramafic rocks and the concentration of nickel in the Western Ivory Coast. Economic Geology, 77, 1159–1175.Google Scholar
Noack, Y., Colin, F., Nahon, D., Delvigne, J. & Michaux, L. (1993) Secondary-mineral formation during natural weathering of pyroxene: review and thermodynamic approach. American Journal of Science, 293, 111–134.Google Scholar
Oliveira, S.M.B. de & Trescases, J.J. (1992) Lateritic nickel deposits of Brazil. Mineralium Deposita, 27, 137–146.Google Scholar
Paquet, H., Duplay, J., Nahon, D., Tardy, Y. & Millot, G. (1983) Analyses chimiques de particules isolées dans les populations de minéraux argileux. Passage des smectites magnésiennes trioctaédriques aux smectites ferrifères dioctaédriques au cours de l’altération des roches ultrabasiques. Comptes Rendus de lAcadémie des Sciences II, 296, 699–704.Google Scholar
Petit, S., Righi, D., Madejová J. & Decarreau, A. (1998) Layer charge estimation of smectites using infrared spectroscopy. Clay Minerals, 33, 579–591.Google Scholar
Petit, S., Caillaud, J., Righi, D., Madejová J., Elsass, F. & Köster, H.M. (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37, 283–297.Google Scholar
Reynolds, R.C. (1985) NEWMOD: A computer program for the calculation of the basal diffraction intensities of mixed-layered clay minerals. R.C. Reynolds, 8 Brook Rd, Hanover, New Hampshire, USA.Google Scholar
Sherman, D.V. & Vergo, N. (1988) Optical (diffuse reflectance) and Mössbauer spectroscopic study of nontronite and related Fe-bearing smectites. American Mineralogist, 73, 1346–1354.Google Scholar
Suquet, H., Malard C, Copin, E. & Pezerat, H. (1981a) Variation du paramètre b et de la distance basale d dans une série de saponites à charge croissante: I. Etats hydratés. Clay Minerals, 16, 53–67.Google Scholar
Suquet, H., Malard C, Copin, E. & Pezerat, H. (1981b) Variation du paramètre b et de la distance basale d001 dans une série de saponites à charge croissante: II. Etats ‘zéro couche’. Clay Minerals, 16, 181–193.Google Scholar
Vieira Coelho, A.C., Poncelet, G. & Ladrière, J. (2000) Nickel, iron-containing clay minerals from Niquelandia deposit, Brazil, 1. Characterization. Applied Clay Science, 17, 163–181.Google Scholar
Wildman, W.E., Jackson, M.L. & Whittig, L.D. (1968) Iron-rich montmorillonite formation in soils derived from serpentinite. Soil Science Society of America Proceedings, 32, 787–794.Google Scholar
Zeissink, H.E. (1969) The mineralogy and geochemistry of a nickeliferous laterite profile (Greenvale, Queensland, Australia). Mineralium Deposita, 4, 132–152.Google Scholar