Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T17:41:10.358Z Has data issue: false hasContentIssue false

Energy changes when kaolin minerals are heated

Published online by Cambridge University Press:  14 March 2018

F. Vaughan*
Affiliation:
British Ceramic Research Association, Stoke on Trent
Get access

Abstract

The work outlined in this paper was undertaken to show how, by a consideration of the energy changes involved, some insight may be gained into the reactions occurring when kaolin minerals are heated.

Activation energies have been determined experimentally for the dehydration of various kaolin minerals. The fireclay mineral is distinctive and it is suggested that it does not form part of a halloysitekaolinite series. It is further thought possible that there is a series of fireclay minerals.

From thermochemical and thermodynamic considerations the heat of formation of kaolinite has been calculated approximately and enthalpy and free energy changes have been estimated for the exothermic reaction at 980°C. These indicate that, if a compound is produced during dehydration, the most probable explanation of the exothermic reaction is the simultaneous production of mullite, γAl2O3 and SiO2. Finally the lattice energies of kaolinite and its thermal decomposition products have been calculated.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrhenius, S. 1889 Z. phys. Chem., 4, 226 CrossRefGoogle Scholar
Avgustinik, A. I. and Mchedlov-Petrosyan, O. P. 1952 J. Appl. Chem. U.S.S.R., 25, 216.Google Scholar
Beech, D. G. 1954 B. Ceram. R. A. Personal Commun.Google Scholar
de Boer, J. H. and Houben, G. M. M. 1954 Proc. Int. Symp. Reactivity Solids, 1, 237.Google Scholar
Born, M. 1919 Verh. dts ch. phys. Ges., 21, 679.Google Scholar
Brown, M. J. and Gregg, S. J. 1952 Clay Min. Bull., 1, 228.CrossRefGoogle Scholar
Budnikov, P. P. and Bobrovnik, D. P. 1936 J. Chim. Ukr., 11, 41.Google Scholar
Carr, K., Grimshaw, R. W. and Roberts, A. L. 1952 Trans. Brit. Ceram. Soc., 51, 334.Google Scholar
Glass, H. D. 1954 Amer. Min., 39, 193.Google Scholar
Grim, R. E. and Bradley, W. F. 1948 Amer. Min., 33, 50.Google Scholar
Gruchvitski, P. V. 1941 Uchen. Zap. L.G.U. Series 8, 1941.Google Scholar
Haber, F. 1919 Verh. disch. phys. Ges., 21, 750.Google Scholar
Handbook of Chemistry and Physics 1950 Cleveland, Ohio: Chemical Rubber Publishing (32nd Ed., A50).Google Scholar
Handbook of Physical Constants 1942 Geol. Soc. Amer. Spec. Pap. No. 36, 228.Google Scholar
Kapustinsky, A. F. 1943 J. gen. Chem., Moscow, 13, 497.Google Scholar
Kröger, C. 1953 Glastech. Ber., 26, 202.Google Scholar
Maier, C. G. and Kelley, K. K. 1932 J. Amer. chem. Soc., 54, 3243.CrossRefGoogle Scholar
Mellor, J. W. 1938 Trans. Brit. Ceram. Soc., 37, 118.Google Scholar
Murray, P. and White, J. 1949 Trans. Brit. Ceram. Soc., 48, 187.Google Scholar
Nelson, R. A. and Hendricks, S. B. 1943 Soil Sci., 56, 285.CrossRefGoogle Scholar
Pieters, H. A. J. 1928 Technische Hoogeschool (Delft: Thesis, 148 pages).Google Scholar
Richardson, H. M. 1951 Phase Changes which occur on Heating Kaolin Clays. “X-ray Identification and Structure of Clay Minerals,” Ed. by Brindley, G.W., London: Miner. Soc. (Clay Min. Group).Google Scholar
Roberts, A. L. 1951 Cited by Mackenzie, R. C. in discussion Clay Min. Bull, 1, 186 Google Scholar
Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S. and Jaffe, I. 1952 Nat. Bur. Stand. Circ. 500.Google Scholar
Shvetsov, B. S. and Gevorkyan, C.O. 1942. J. Appl. Chem. U.S.S.R., 15, 302 Google Scholar
Schwarz, R. and Trageser, G. 1932 Chem. d. Erde, 7, 566.Google Scholar
Slawson, R. J. and Vaughan, F. 1954 B. Ceram. R. A. Unpublished data.Google Scholar
Stone, R. L. 1952 J. Amer. Ceram. Soc., 35, 90.CrossRefGoogle Scholar
Vaughan, F. and Wilde, F.G. 1954 B. Ceram. R.A. Unpublished data.Google Scholar
Vier, D. T. and Mayer, J. E. 1944 J. Chem. Phys., 12, 28.CrossRefGoogle Scholar