Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T17:39:10.984Z Has data issue: false hasContentIssue false

The dehydration of gibbsite and the structure of a tetragonal γ—Al2O3

Published online by Cambridge University Press:  14 March 2018

H. Saalfeld*
Affiliation:
Max Planck Institut fuer Silikatforschung, Würzburg, Germany
Get access

Abstract

Single crystals of gibbsite were partially dehydrated to boehmite in a hydrothermal atmosphere. Most of the boehmite crystallites show preferred orientation that can be explained by the octahedral linkage. Further heating in air leads to a tetragonal γ-Al2O3 whose crystallites also are oriented. The orientations give information about structural details. At about 900°C a transformation γθ-Al2O3 takes place. In this case too the crystallites are oriented. The oxygen chains lying parallel to the a-axis of gibbsite are strongly bound and are taken over in every new lattice during transformation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchin, L., Imelik, B. and Prettre, M. 1951. C. R. Acad. Sci. Paris, 233, 1029.Google Scholar
Blanchin, L., Imelik, B. and Prettre, M. 1953. C. R. Acad. Sci. Paris, 236, 1025.Google Scholar
Chatelain, P. and Maughin, Ch. 1955. C. R. Acad. Sci., Paris, 241, 46.Google Scholar
Courtial, R., Trambouze, Y. and Prettre, M. 1956. C. R. Acad. Sci.,Paris, 242, 1607.Google Scholar
De Boer, J. H. and Houben, G. M. M. 1952. Proc. Intern. Symp. React. Solids, 237.Google Scholar
De Boer, J. H., Fortuin, J. M. H. and Steggerda, J. J. 1954. Konikl. Nederl. Akad. Wetensch., Ser. B 57, No. 2 and No. 4.Google Scholar
De Boer, J. H., Steggerda, J. J. and Zwietering, P. 1956. Konikl. Nederl. Akad. Wetensch., Ser. B 59, No. 5.Google Scholar
Deflandre, M. 1932. Bull. Soc. franc. Miner., 55, 140.Google Scholar
Ervin, G. 1952. Acta cryst., 5, 103.CrossRefGoogle Scholar
Eyraud, Ch., Goton, R. and Prettre, M. 1955. C. R. Acad. Sci., Paris, 240, 1082.Google Scholar
Foster, L. M. and Stumpf, H. C. 1953. J. Amer. chem. Soc., 73, 1590.CrossRefGoogle Scholar
Glemser, O. and Rieck, G. 1955. Z. angew. Chem., 67, 652.Google Scholar
Glemser, O. and Rieck, G. 1956. Z. angew. Chem., 68, 182.Google Scholar
Glemser, O. and Rieck, G. 1957. Naturwissenschaften, 44, 180.Google Scholar
Hartmann, P. and Perdoc, W. G. 1955. Acta cryst., 8, 49.Google Scholar
Huttig, W. and Ginsbert, H. 1955. Z. anorg. Chem., 278, 93.Google Scholar
Imelik, B., Petitjean, M. and Prettre, M. 1954. C. R. Acad. Sci., Paris, 238, 900.Google Scholar
Kohn, J. A., Katz, G. and Broder, J. D. 1957. Amer. Min. 42, 398.Google Scholar
Papée, D. and Tertian, R. 1955. Bull. Soc. chim., France, 22, 983.Google Scholar
Sasvari, K. and Hegedus, A. J. 1955. Naturwissenschaften, 42, 254.Google Scholar
Steggerda, J. J. 1955. Proefschrift Techn. Hogeschool Delft.Google Scholar
Stumpf, H. C., Russell, A. S., Newsome, J. W. and Tucker, C. M. 1950. lndustr. Engng. Chem., 42, 1398.Google Scholar
Tertian, M. R. 1950. C. R. Acad. Sci., Paris, 230, 1677.Google Scholar
Tertian, M. R., Papée, D. and Charrier, J. 1954. C. R. Acad. Sci.,Paris, 238, 98.Google Scholar
Thibon, H., Charrier, J. and Tertian, R. 1951. Bull. Soc. chim., France, 18, 384.Google Scholar
Tran-Huu, The and Prettre, M. 1952. C. R. Acad. Sci., Paris, 234, 1366.Google Scholar
Watson, J. H. L., Freise, A. V., de Souza, Santos P. and Parsous, J. 1957. Kolloidzschr., 154, 4 Google Scholar