Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T15:20:52.507Z Has data issue: false hasContentIssue false

Vocal cord palsy as a sequela of paediatric cardiac surgery – a review

Part of: Surgery

Published online by Cambridge University Press:  05 April 2021

Aditi Sinha
Affiliation:
St George’s University of London, London, UK
Alexander Geragotellis
Affiliation:
Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
Guntaj Kaur Singh
Affiliation:
University of Central Lancashire, Lancashire, Preston, UK
Devika Verma
Affiliation:
University of Central Lancashire, Lancashire, Preston, UK
Daniyal Matin Ansari
Affiliation:
St George’s University of London, London, UK
Abdullah Tarmahomed
Affiliation:
Department of Paediatric Cardiology, Alder Hey Children’s Hospital, Liverpool, UK
Emma Whitehall
Affiliation:
Department of ENT, Alder Hey Children Hospital, Liverpool, UK
Natalie Lowe
Affiliation:
Department of ENT, Alder Hey Children Hospital, Liverpool, UK
Amer Ashry
Affiliation:
Department of Congenital Cardiac Surgery, Alder Hey Children Hospital, Liverpool, UK School of Medicine, University of Assiut, Assiut, Egypt
Amer Harky*
Affiliation:
Department of Congenital Cardiac Surgery, Alder Hey Children Hospital, Liverpool, UK Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
*
Author for correspondence: Amer Harky, MBChB, MSc, MRCS, Department of Congenital Cardiac Surgery, Alder Hey Children Hospital, Liverpool, L14 5AB, UK. Tel: +44- 0151 228 4811. E-mail: [email protected]

Abstract

Background:

Vocal cord palsy is one of the recognised complications of complex cardiac surgery in the paediatric population. While there is an abundance of literature highlighting the presence of this complication, there is a scarcity of research focusing on the pathophysiology, presentation, diagnosis, and treatment options available for children affected by vocal cord palsy.

Materials and methods:

Electronic searches were conducted using the search terms: “Vocal Cord Palsy,” “VCP,” “Vocal Cord Injury,” “Paediatric Heart Surgery,” “Congenital Heart Surgery,” “Pediatric Heart Surgery,” “Vocal Fold Movement Impairment,” “VFMI,” “Vocal Fold Palsy,” “PDA Ligation.” The inclusion criteria were any articles discussing the outcomes of vocal cord palsy following paediatric cardiac surgery.

Results:

The two main populations affected by vocal cord palsy are children undergoing aortic arch surgery or those undergoing PDA ligation. There is paucity of prospective follow-up studies; it is therefore difficult to reliably assess the current approaches and the long-term implications of management options.

Conclusion:

Vocal cord palsy can be a devastating complication following cardiac surgery, which if left untreated, could potentially result in debilitation of quality of life and in severe circumstances could even lead to death. Currently, there is not enough high-quality evidence in the literature to aid recognition, diagnosis, and management leaving clinicians to extrapolate evidence from adult studies to make clinical judgements. Future research with a focus on the paediatric perspective is necessary in providing evidence for good standards of care.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Y, Chen, S, Zühlke, L, Black, GC, Choy, MK, Li, N, Keavney, BD. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 2019; 48: 455463. https://doi.org/10.1093/ije/dyz009 CrossRefGoogle ScholarPubMed
Bouma, BJ, Mulder, BJM. Changing Landscape of Congenital Heart Disease. Circ Res 2017; 120: 908922. https://doi.org/10.1161/CIRCRESAHA.116.309302 CrossRefGoogle ScholarPubMed
van der Linde, D, Konings, EE, Slager, MA, Witsenburg, M, Helbing, WA, Takkenberg, JJ, Roos-Hesselink, JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58: 22412247. https://doi.org/10.1016/j.jacc.2011.08.025 CrossRefGoogle ScholarPubMed
Kim, DS, Kim, JH, Burt, AA, et al. Patient genotypes impact survival after surgery for isolated congenital heart disease. Ann Thorac Surg 2014; 98: 104111. https://doi.org/10.1016/j.athoracsur.2014.03.017 CrossRefGoogle ScholarPubMed
Oster, ME, Lee, KA, Honein, MA, Riehle-Colarusso, T, Shin, M, Correa, A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013; 131: e1502e1508. https://doi.org/10.1542/peds.2012-3435 CrossRefGoogle ScholarPubMed
Daya, H, Hosni, A, Bejar-Solar, I, Evans, JNG, Bailey, CM. Pediatric vocal fold paralysis. Arch Otolaryngol Head Neck Surg 2000; 126: 2125. https://doi.org/10.1001/archotol.126.1.21 CrossRefGoogle ScholarPubMed
Raut, MS, Maheshwari, A, Joshi, R et al. Vocal cord paralysis after cardiac surgery and interventions: a review of possible etiologies. J Cardiothorac Vasc Anesth 2016; 30: 16611667. https://doi.org/10.1053/j.jvca.2016.08.002 CrossRefGoogle ScholarPubMed
Rodney, JP, Thompson, JL, Anderson, MP, Burkhart, HM. Neonatal vocal fold motion impairment after complex aortic arch reconstruction: What should parents expect after diagnosis? Int J Pediatr Otorhinolaryngol 2019; 120: 4043. https://doi.org/10.1016/j.ijporl.2019.02.006 CrossRefGoogle ScholarPubMed
Henry, BM, Hsieh, WC, Sanna, B, Vikse, J, Taterra, D, Tomaszewski, KA. Incidence, risk factors, and comorbidities of vocal cord paralysis after surgical closure of a patent ductus arteriosus: a meta-analysis. Pediatr Cardiol 2019; 40: 116125. https://doi.org/10.1007/s00246-018-1967-8 CrossRefGoogle ScholarPubMed
Alfares, FA, Hynes, CF, Ansari, G, et al. Outcomes of recurrent laryngeal nerve injury following congenital heart surgery: a contemporary experience. J Saudi Heart Assoc 2016; 28: 16. https://doi.org/10.1016/j.jsha.2015.05.002 CrossRefGoogle ScholarPubMed
Karas, AF, Patki, A, Ryan, MA, Upchurch, PA, Eapen, RJ, Raynor, EM. Outcomes of vocal fold immobility after pediatric cardiovascular surgery. Otolaryngol– Open J 2019; 5: 2933. https://doi.org/10.17140/otloj-5-157 CrossRefGoogle Scholar
Shaath, GA, Jijeh, A, Alkurdi, A, Ismail, S, Elbarbary, M, Kabbani, MS. Ultrasonography assessment of vocal cords mobility in children after cardiac surgery. J Saudi Heart Assoc 2012; 24: 187190. https://doi.org/10.1016/j.jsha.2012.02.009 CrossRefGoogle ScholarPubMed
Handler, SD. Direct laryngoscopy in children: rigid and flexible fiberoptic. Ear Nose Throat J 1995; 74: 100106.CrossRefGoogle ScholarPubMed
Benjamin, JR, Smith, PB, Cotten, CM, Jaggers, J, Goldstein, RF, Malcolm, WF. Long-term morbidities associated with vocal cord paralysis after surgical closure of a patent ductus arteriosus in extremely low birth weight infants. J Perinatol 2010; 30: 408413. https://doi.org/10.1038/jp.2009.124 CrossRefGoogle ScholarPubMed
Scott, AR, Chong, PST, Randolph, GW, Hartnick, CJ. Intraoperative laryngeal electromyography in children with vocal fold immobility: A simplified technique. Int J Pediatr Otorhinolaryngol 2008; 72: 3140. https://doi.org/10.1016/j.ijporl.2007.09.011 CrossRefGoogle ScholarPubMed
Maturo, SC, Braun, N, Brown, DJ, Chong, PS, Kerschner, JE, Hartnick, CJ. Intraoperative laryngeal electromyography in children with vocal fold immobility: results of a multicenter longitudinal study. Arch Otolaryngol Head Neck Surg 2011; 137: 12511257. https://doi.org/10.1001/archoto.2011.184 CrossRefGoogle ScholarPubMed
Setlur, J, Hartnick, CJ. Management of unilateral true vocal cord paralysis in children. Curr Opin Otolaryngol Head Neck Surg 2012; 20: 497501. https://doi.org/10.1097/MOO.0b013e3283590b56 CrossRefGoogle ScholarPubMed
Dewan, K, Cephus, C, Owczarzak, V, Ocampo, E. Incidence and implication of vocal fold paresis following neonatal cardiac surgery. Laryngoscope 2012; 122: 27812785. https://doi.org/10.1002/lary.23575 CrossRefGoogle ScholarPubMed
Lachanas, VA, Exarchos, S, Tsiouvaka, S, et al. Does perioperative dexamethasone affect voice-related quality of life after thyroidectomy? Eur Arch Otorhinolaryngol 2014; 271: 30733076. https://doi.org/10.1007/s00405-014-3168-2 CrossRefGoogle ScholarPubMed
Misono, S, Merati, AL. Evidence-Based practice: evaluation and management of unilateral vocal fold paralysis. Otolaryngol Clin North Am 2012; 45: 10831108. https://doi.org/10.1016/j.otc.2012.06.011 CrossRefGoogle ScholarPubMed
Espinosa, MC, Ongkasuwan, J. Recurrent laryngeal nerve reinnervation: Is this the standard of care for pediatric unilateral vocal cord paralysis? Curr Opin Otolaryngol Head Neck Surg 2018; 26: 431436. https://doi.org/10.1097/MOO.0000000000000499 CrossRefGoogle ScholarPubMed
Jabbour, J, Martin, T, Beste, D, Robey, T. Pediatric vocal fold immobility: natural history and the need for long-term follow-up. JAMA Otolaryngol Head Neck Surg 2014; 140: 428433. https://doi.org/10.1001/jamaoto.2014.81 CrossRefGoogle ScholarPubMed
Anthony, B, Parker, N, Patel, R, Halum, S. Surgical considerations for laryngeal reinnervation and future research directions. Curr Otorhinolaryngol Rep 2020; 8: 224229. https://doi.org/10.1007/s40136-020-00294-7 CrossRefGoogle Scholar
Zur, KB, Carroll, LM. Recurrent laryngeal nerve reinnervation in children: acoustic and endoscopic characteristics pre-intervention and post-intervention. A comparison of treatment options. Laryngoscope 2015; 125: S1S15. https://doi.org/10.1002/lary.25538 CrossRefGoogle ScholarPubMed
Meister, KD, Johnson, A, Sidell, DR. Injection laryngoplasty for children with unilateral vocal fold paralysis: procedural limitations and swallow outcomes. Otolaryngol Head Neck Surg 2019; 160: 540545. https://doi.org/10.1177/0194599818813002 CrossRefGoogle ScholarPubMed
Zeitels, SM, Mauri, M, Dailey, SH. Medialization laryngoplasty with Gore-Tex for voice restoration secondary to glottal incompetence: Indications and observations. Ann Oto Rhinol Laryn 2003; 112: 180184. https://doi.org/10.1177/000348940311200213 CrossRefGoogle ScholarPubMed
Butskiy, O, Mistry, B, Chadha, NK. Surgical interventions for pediatric unilateral vocal cord paralysis: a systematic review. JAMA Otolaryngol Head Neck Surg 2015; 141: 654660. https://doi.org/10.1001/jamaoto.2015.0680 CrossRefGoogle ScholarPubMed
Maragos, NE. Revision thyroplasty. Ann Oto Rhinol Laryn 2001; 110: 10871092. https://doi.org/10.1177/000348940111001201 CrossRefGoogle ScholarPubMed
Isshiki, N, Tanabe, M, Sawada, M. Arytenoid adduction for unilateral vocal cord paralysis. Arch Otolaryngol 1978; 104: 555558. https://doi.org/10.1001/archotol.1978.00790100009002 CrossRefGoogle ScholarPubMed
Hoffman, MR, Surender, K, Chapin, WJ, Witt, RE, Mcculloch, TM, Jiang, JJ. Optimal arytenoid adduction based on quantitative real-time voice analysis. Laryngoscope 2011; 121: 339345. https://doi.org/10.1002/lary.21346 CrossRefGoogle ScholarPubMed
Marie, JP, Hansen, K, Brami, P, Marronnier, A, Bon-Mardion, N. Nonselective reinnervation as a primary or salvage treatment of unilateral vocal fold palsy. Laryngoscope 2020; 130: 17561763. https://doi.org/10.1002/lary.28324 CrossRefGoogle ScholarPubMed
Paniello, RC, Edgar, JD, Kallogjeri, D, Piccirillo, JF. Medialization versus reinnervation for unilateral vocal fold paralysis: a multicenter randomized clinical trial. Laryngoscope 2011; 121: 21722179. https://doi.org/10.1002/lary.21754 CrossRefGoogle ScholarPubMed
Smith, ME, Roy, N, Houtz, D. Laryngeal reinnervation for paralytic dysphonia in children younger than 10 years. Arch Otolaryngol Head Neck Surg 2012; 138: 11611166. https://doi.org/10.1001/jamaoto.2013.803 CrossRefGoogle ScholarPubMed
Ing, C, DiMaggio, C, Whitehouse, A, et al. Long-term differences in language and cognitive function after childhood exposure to anaesthesia. Pediatrics 2012; 130: e476e485. https://doi.org/10.1542/peds.2011-3822 CrossRefGoogle Scholar
Sipp, JA, Kerschner, JE, Braune, N, Hartnick, CJ. Vocal fold medialization in children. Arch Otolaryngol Head Neck Surg 2007; 133: 767771. https://doi.org/10.1001/archotol.133.8.767 CrossRefGoogle ScholarPubMed
Ongkasuwan, J, Espinosa, MCL, Hollas, S, Devore, D, Procter, T, Bassett, E, Schwabe, A. Predictors of voice outcome in pediatric non-selective laryngeal reinnervation. Laryngoscope 2020; 130: 15251531. https://doi.org/10.1002/lary.28282 CrossRefGoogle ScholarPubMed
Li, Y, Garrett, G, Zealear, D. Current treatment options for bilateral vocal fold paralysis: a state-of-the-art review. Clin Exp Otorhinolaryngol 2017; 10: 203212. https://doi.org/10.21053/ceo.2017.00199 CrossRefGoogle ScholarPubMed
Trozzi, M, Meucci, D, Salvati, A, Tropiano, ML, Bottero, S, Hart, C. Surgical options for pediatric bilateral vocal cord palsy : state of the art. Front Pediatr 2020; 8:19. https://doi.org/10.3389/fped.2020.538562 CrossRefGoogle ScholarPubMed
Westwood, EL, Hutchins, JV, Thevasagayam, R. Quality of life in paediatric tracheostomy patients and their caregivers – a cross-sectional study. Int J Pediatr Otorhinolaryngol 2019; 127: 109606. https://doi.org/10.1016/j.ijporl.2019.109606 CrossRefGoogle ScholarPubMed
Young, VN, Rosen, CA. Arytenoid and posterior vocal fold surgery for bilateral vocal fold immobility. Curr Opin Otolaryngol Head Neck Surg 2011; 19: 422427. https://doi.org/10.1097/MOO.0b013e32834c1f1c CrossRefGoogle ScholarPubMed
Crumley, RL. Experiments in laryngeal reinnervation. Laryngoscope 1982; 92: 127. https://doi.org/10.1288/00005537-198209001-00001 CrossRefGoogle ScholarPubMed
Lee, JW, Bon-Mardion, N, Smith, ME, Marie, JP. Bilateral selective laryngeal reinnervation for bilateral vocal fold paralysis in children. JAMA Otolaryngol Head Neck Surg 2020; 146: 401407. https://doi.org/10.1001/jamaoto.2019.4863 CrossRefGoogle ScholarPubMed
Zeitels, SM, Hochman, I, Hillman, RE. Adduction arytenopexy: a new procedure for paralytic dysphonia with implications for implant medialization. Ann Oto Rhinol Laryn Suppl 1998; 173: 224. PMID: 9750545 Google ScholarPubMed
Damrose, EJ. Suture laterofixation of the vocal fold for bilateral vocal fold immobility. Curr Opin Otolaryngol Head Neck Surg 2011; 19: 416421. https://doi.org/10.1097/MOO.0b013e32834c7d15 CrossRefGoogle ScholarPubMed
Mueller, AH, Pototschnig, C. Recurrent laryngeal nerve stimulator. Otolaryngol Clin North Am 2020; 53: 145156. https://doi.org/10.1016/j.otc.2019.09.009 CrossRefGoogle ScholarPubMed
Shiotani, A, Saito, K, Araki, K, Moro, K, Watabe, K. Gene therapy for laryngeal paralysis. Ann Otol Rhinol Laryngol 2007; 116: 115122. https://doi.org/10.1177/000348940711600207 CrossRefGoogle ScholarPubMed
Araki, K, Suzuki, H, Uno, K, Tomifuji, M, Shiotani, A. Gene therapy for recurrent laryngeal nerve injury. Genes 2018; 9: 316. https://doi.org/10.3390/genes9070316 CrossRefGoogle ScholarPubMed
Engeseth, MS, Olsen, NR, Maeland, S, Halvorsen, T, Goode, A, Røksund, OD. Left vocal cord paralysis after patent ductus arteriosus ligation: a systematic review. Paediatr Respir Rev 2018; 27: 7485. https://doi.org/10.1016/j.prrv.2017.11.001 Google ScholarPubMed
Pourmoghadam, K, DeCampli, W, Ruzmetov, M, Kosko, J, Kishawi, S, O’Brien, M, Cowden, A, Piggott, K, Fakioglu, H. Recurrent laryngeal nerve injury and swallowing dysfunction in neonatal aortic arch repair. Ann Thorac Surg 2017; 104: 16111618. https://doi.org/10.1016/j.athoracsur.2017.03.080 CrossRefGoogle ScholarPubMed
Fan, L, Campbell, D, Clarke, D, Washington, R, Fix, E, White, C. Paralyzed left vocal cord associated with ligation of patent ductus arteriosus. J Thorac Cardiovasc Surg 1989; 98: 611613. https://doi.org/10.1016/S0022-5223(19)34364-8 CrossRefGoogle ScholarPubMed
Truong, M, Messner, A, Kerschner, J, Scholes, M, Wong-Dominguez, J, Milczuk, H, Yoon, P. Pediatric vocal fold paralysis after cardiac surgery: Rate of recovery and sequelae. Otolaryngol Head Neck Surg 2007; 137: 780784. https://doi.org/10.1016/j.otohns.2007.07.028 CrossRefGoogle ScholarPubMed
Zbar, RIS, Chen, AH, Behrendt, DM, Bell, EF, Smith, RJH. Incidence of Vocal Fold Paralysis in Infants undergoing ligation of patent ductus arteriosus. Ann Thorac Surg 1996; 61: 814816. https://doi.org/10.1016/0003-4975(95)01152-8 CrossRefGoogle ScholarPubMed
Nichols, BG, Jabbour, J, Hehir, DA, et al. Recovery of vocal fold immobility following isolated patent ductus arteriosus ligation. Int J Pediatr Otorhinolaryngol 2014; 78, 13161319. https://doi.org/10.1016/j.ijporl.2014.05.019 CrossRefGoogle ScholarPubMed
Skinner, ML, Halstead, LA, Rubinstein, CS, Atz, AM, Andrews, D, Bradley, SM. Laryngopharyngeal dysfunction after the Norwood procedure. J Thorac Cardiovasc Surg 2005; 130: 12931301. https://doi.org/10.1016/j.jtcvs.2005.07.013 CrossRefGoogle ScholarPubMed
Sachdeva, R, Hussain, E, Moss, MM, Schmitz, ML, Ray, RM, Imamura, M, Jaquiss, RDB. Vocal cord dysfunction and feeding difficulties after pediatric cardiovascular surgery. J Pediatr 2007; 151: P312P315. https://doi.org/10.1016/j.jpeds.2007.03.014 CrossRefGoogle ScholarPubMed
Pereira, K, Webb, B, Blakely, M, Cox, C, Lally, K. Sequelae of recurrent laryngeal nerve injury after patent ductus arteriosus ligation. Int J Pediatr Otorhinolaryngol 2006; 70: 16091612. https://doi.org/10.1016/j.ijporl.2006.05.001 CrossRefGoogle ScholarPubMed
Haraldstad, K, Wahl, A, Andenæs, R, et al. A systematic review of quality of life research in medicine and health sciences. Qual Life Res 2019; 28: 26412650. https://doi.org/10.1007/s11136-019-02214-9 CrossRefGoogle ScholarPubMed
Boseley, ME, Cunningham, MJ, Volk, MS, Hartnick, CJ. Validation of the pediatric voice-related quality-of-life survey. Arch Otolaryngol Head Neck Surg 2006; 132: 717720. https://doi.org/10.1001/archotol.132.7.717 CrossRefGoogle ScholarPubMed
Walz, PC, Hubbell, MP, Elmaraghy, CA. Voice related quality of life in pediatric patients with a history of prematurity. Int J Pediatr Otorhinolaryngol 2014; 78: .10101014. https://doi.org/10.1016/j.ijporl.2014.03.023 CrossRefGoogle Scholar
Khariwala, S, Lee, W, Koltai, P. Laryngotracheal consequences of pediatric cardiac surgery. Arch Otolaryngol Head Neck Surg 2005; 131: 336339. https://doi.org/10.1001/archotol.131.4.336 CrossRefGoogle ScholarPubMed
Richter, AL, Ongkasuwan, J, Ocampo, EC. Long-term follow-up of vocal fold movement impairment and feeding after neonatal cardiac surgery. Int J Pediatr Otorhinolaryngol 2016; 83: 211214. https://doi.org/10.1016/j.ijporl.2016.02.014 CrossRefGoogle ScholarPubMed
Røksund, OD, Clemm, H, Heimdal, JH, Aukland, SM, Sandvik, L, Markestad, T, Halvorsen, T. Left vocal cord paralysis after extreme preterm birth, a new clinical scenario in adults. Pediatrics 2010; 126: e1569e1577. https://doi.org/10.1542/peds.2010-1129 CrossRefGoogle ScholarPubMed
Gorantla, S, Chan, T, Shen, I, Wilkes, J, Bratton, S. Current epidemiology of vocal cord dysfunction after congenital heart surgery in young infants. Pediatric Critical Care Medicine 2019; 20: 817825. https://doi.org/10.1097/PCC.0000000000002010 CrossRefGoogle ScholarPubMed