Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T22:23:33.489Z Has data issue: false hasContentIssue false

The use of N-terminal (1–76) pro-brain natriuretic peptide in the aetiology of severe respiratory distress in the paediatric emergency department

Published online by Cambridge University Press:  17 December 2021

Eser Doğan*
Affiliation:
Department of Pediatrics, Division of Pediatric Cardiology, Ege University Faculty of Medicine, İzmir, Turkey
Caner Turan
Affiliation:
Department of Pediatrics, Division of Pediatric Emergency, Ege University Faculty of Medicine, İzmir, Turkey
Ali Yurtseven
Affiliation:
Department of Pediatrics, Division of Pediatric Emergency, Ege University Faculty of Medicine, İzmir, Turkey
Benay Turan
Affiliation:
Department of Pediatrics, Ege University Faculty of Medicine, İzmir, Turkey
Eylem Ulaş Saz
Affiliation:
Department of Pediatrics, Division of Pediatric Emergency, Ege University Faculty of Medicine, İzmir, Turkey
*
Author for correspondence: E. Doğan, Department of Pediatrics, Division of Pediatric Cardiology, Ege University Faculty of Medicine, İzmir, Turkey. Tel: +902323434343. E-mail: [email protected]

Abstract

Introduction:

Acute respiratory distress is one of the most common reasons for paediatric emergency visits. Paediatric patients require rapid diagnosis and treatment. Our aim in this study was to use N-terminal (1–76) pro-brain natriuretic peptide to differentiate respiratory distress of cardiac and pulmonary origin in children. Our aim was to investigate the role of N-terminal (1–76) pro-brain natriuretic peptide in the detection of patients with new-onset heart failure in the absence of an underlying congenital heart anomaly.

Methods:

All children aged 0–18 years who presented to the paediatric emergency department due to severe respiratory distress were included in the study prospectively. The patients’ demographic characteristics, presenting complaints, clinical findings, and N-terminal (1–76) pro-brain natriuretic peptide concentrations, were investigated. In patients with severe Pediatric Respiratory Severity Score, congestive heart failure score was calculated using the modified Ross Score.

Results:

This study included 47 children between the ages of 1 month and 14 years. The median N-terminal (1–76) pro-brain natriuretic peptide concentration was 5717 (IQR:16158) pg/mL in the 25 patients with severe respiratory distress due to heart failure and in the 22 patients with severe respiratory distress due to lung pathology was 437 (IQR:874) pg/mL (p < 0.001). In the 25 patients with severe respiratory distress due to heart failure, 8281 (IQR:8372) pg/mL in the 16 patients with underlying congenital heart anomalies, and 1983 (IQR:2150) pg/mL in the 9 patients without a congenital heart anomaly (p < 0.001). The 45 patients in the control group had a median N-terminal (1–76) pro-brain natriuretic peptide concentration of 47.2 (IQR:56.2) pg/mL.

Conclusion:

Using scoring systems in combination with N-terminal (1–76) pro-brain natriuretic peptide cut-off values can help direct and manage treatment.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krauss, BS, Harakal, T, Fleisher, GR. The spectrum and frequency of illness presenting to a pediatric emergency department. Pediatr Emerg Care 1991; 7: 67.10.1097/00006565-199104000-00001CrossRefGoogle ScholarPubMed
Vega, RM, Kaur, H, Edemekong, PF. Cardiopulmonary arrest in children, 2020 Jul 17. In StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL), 2021.Google Scholar
Rotta, AT, Wiryawan, B. Respiratory emergencies in children. Respir Care 2003; 48: 248258.Google ScholarPubMed
Clerico, A, Passino, C, Franzini, M, Emdin, M. Cardiac biomarker testing in the clinical laboratory: where do we stand? General overview of the methodology with special emphasis on natriuretic peptides. Clin Chim Acta 2015; 443: 1724. DOI 10.1016/j.cca.2014.06.003.CrossRefGoogle ScholarPubMed
Clerico, A, Recchia, FA, Passino, C, Emdin, M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol 2006; 290: H17H29. DOI 10.1152/ajpheart.00684.2005.CrossRefGoogle ScholarPubMed
Lin, CW, Zeng, XL, Jiang, SH, et al. Role of the NT-proBNP level in the diagnosis of pediatric heart failure and investigation of novel combined diagnostic criteria. Exp Ther Med 2013; 6: 995999. DOI 10.3892/etm.2013.1250.10.3892/etm.2013.1250CrossRefGoogle ScholarPubMed
Nir, A, Lindinger, A, Rauh, M, et al. NT-pro-B-type natriuretic peptide in infants and children: reference values based on combined data from four studies. Pediatr Cardiol 2009; 30: 38. DOI 10.1007/s00246-008-9258-4.CrossRefGoogle ScholarPubMed
Rørth, R, Jhund, PS, Yilmaz, MB, et al. Comparison of BNP and NT-proBNP in patients with heart failure and reduced ejection fraction. Circ Heart Fail 2020; 13: e006541. DOI 10.1161/CIRCHEARTFAILURE.119.006541.CrossRefGoogle ScholarPubMed
Iacob, D, Butnariu, A, Leucuţa, DC, Samaşca, G, Deleanu, D, Lupan, I. Evaluation of NT-proBNP in children with heart failure younger than 3 years old. Rom J Intern Med 2017; 55: 6974. DOI 10.1515/rjim-2017-0002.Google ScholarPubMed
Maisel, AS, Krishnaswamy, P, Nowak, RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161167. DOI 10.1056/NEJMoa020233.CrossRefGoogle ScholarPubMed
Richards, AM, Nicholls, MG, Espiner, EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation 2003; 107: 27862792. DOI 10.1161/01.CIR.0000070953.76250.B9.CrossRefGoogle ScholarPubMed
Law, YM, Hoyer, AW, Reller, MD, Silberbach, M. Accuracy of plasma B-type natriuretic peptide to diagnose significant cardiovascular disease in children: the Better Not Pout Children! Study. J Am Coll Cardiol 2009; 54: 14671475. DOI 10.1016/j.jacc.2009.06.020.10.1016/j.jacc.2009.06.020CrossRefGoogle ScholarPubMed
Miyaji, Y, Sugai, K, Asako, N, et al. Pediatric respiratory severity score (PRESS) for respiratory tract infections in children. Austin Virol Retrovirol 2015; 2: 1009.Google Scholar
Yeo, KT, Wu, AH, Apple, FS, et al. Multicenter evaluation of the Roche NT-proBNP assay and comparison to the Biosite Triage BNP assay. Clin Chim Acta 2003; 338: 107115. DOI 10.1016/j.cccn.2003.08.016.CrossRefGoogle Scholar
Ross, RD. The Ross classification for heart failure in children after 25 years: a review and an age-stratified revision. Pediatr Cardiol 2012; 33: 12951300. DOI 10.1007/s00246-012-0306-8 .CrossRefGoogle Scholar
Khemani, RG, Smith, L, Lopez-Fernandez, YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med 2019; 7: 115128. DOI 10.1016/S2213-2600(18)30344-8, Erratum in: Lancet Respir Med 2018; Erratum in: Lancet Respir Med 2019;7:e12.CrossRefGoogle ScholarPubMed
Kirk, R, Dipchand, AI, Rosenthal, DN, et al. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: executive summary. J Heart Lung Transplant 2014; 33: 888909. DOI 10.1016/j.healun.2014.06.002, Erratum in: J Heart Lung Transplant 2014;42:1104.10.1016/j.healun.2014.06.002CrossRefGoogle ScholarPubMed
McCullough, PA, Kluger, AY. Interpreting the wide range of NT-proBNP concentrations in clinical decision making. J Am Coll Cardiol 2018; 71: 12011203. DOI 10.1016/j.jacc.2018.01.056.10.1016/j.jacc.2018.01.056CrossRefGoogle ScholarPubMed
Cantinotti, M, Walters, HL, Crocetti, M, Marotta, M, Murzi, B, Clerico, A. BNP in children with congenital cardiac disease: is there now sufficient evidence for its routine use? Cardiol Young 2015; 25: 424437. DOI 10.1017/S1047951114002133.CrossRefGoogle ScholarPubMed
Smith, J, Goetze, JP, Andersen, CB, Vejlstrup, N. Practical application of natriuretic peptides in paediatric cardiology. Cardiol Young 2010; 20: 353363. DOI 10.1017/S1047951110000211.10.1017/S1047951110000211CrossRefGoogle ScholarPubMed
Mir, TS, Laux, R, Hellwege, HH, et al. Plasma concentrations of aminoterminal pro atrial natriuretic peptide and aminoterminal pro brain natriuretic peptide in healthy neonates: marked and rapid increase after birth. Pediatrics 2003; 112: 896899. DOI 10.1542/peds.112.4.896.CrossRefGoogle ScholarPubMed
Albers, S, Mir, TS, Haddad, M, Läer, S. N-Terminal pro-brain natriuretic peptide: normal ranges in the pediatric population including method comparison and interlaboratory variability. Clin Chem Lab Med 2006; 44: 8085. DOI 10.1515/CCLM.2006.016.CrossRefGoogle ScholarPubMed
Holmgren, D, Westerlind, A, Lundberg, PA, Wåhlander, H. Increased plasma levels of natriuretic peptide type B and A in children with congenital heart defects with left compared with right ventricular volume overload or pressure overload. Clin Physiol Funct Imaging 2005; 25: 263269. DOI 10.1111/j.1475-097X.2005.00622.x.CrossRefGoogle ScholarPubMed
Lin, CW, Tang, W, Wen, F, Chen, JJ, Zeng, XL, Chen, ZG. Diagnostic accuracy of NT-ProBNP for heart failure with sepsis in patients younger than 18 years. PLoS One 2016; 11: e0147930. DOI 10.1371/journal.pone.0147930.10.1371/journal.pone.0147930CrossRefGoogle ScholarPubMed
Butnariu, A, Iancu, M, Samaşca, G, Chira, M, Lupan, I. Changes in NT-proBNP in young children with congenital heart malformations. Lab Med 2014; 45: 4347. DOI 10.1309/lmao4uy90yjqwkkp.CrossRefGoogle ScholarPubMed
Zhou, FJ, Zhou, CY, Tian, YJ, et al. Diagnostic value of analysis of H-FABP, NT-proBNP, and cTnI in heart function in children with congenital heart disease and pneumonia. Eur Rev Med Pharmacol Sci 2014; 18: 15131516.Google ScholarPubMed
Qu, J, Liang, H, Zhou, N, et al. Perioperative NT-proBNP level: potential prognostic markers in children undergoing congenital heart disease surgery. J Thorac Cardiovasc Surg 2017; 154: 631640. DOI 10.1016/j.jtcvs.2016.12.056.10.1016/j.jtcvs.2016.12.056CrossRefGoogle ScholarPubMed
Gupta, RK, Zheng, H, Cui, Y, et al. Change in N-terminal pro B-type natriuretic peptide levels and clinical outcomes in children undergoing congenital heart surgery. Int J Cardiol 2019; 283: 96100. DOI 10.1016/j.ijcard.2019.02.025.CrossRefGoogle ScholarPubMed
Lin, F, Zheng, L, Cui, Y, et al. Prognostic value of perioperative NT-proBNP after corrective surgery for pediatric congenital heart defects. BMC Pediatr 2019; 19: 497. DOI 10.1186/s12887-019-1830-y.CrossRefGoogle ScholarPubMed