Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-26T22:41:45.411Z Has data issue: false hasContentIssue false

Sinus node dysfunction in children: different aetiologies, similar clinical course in two-centre experience

Published online by Cambridge University Press:  18 November 2024

Gulhan Tunca Sahin*
Affiliation:
Department of Paediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
Cemil Cihad Kurt
Affiliation:
Department of Paediatric Cardiology, Etlik City Hospital, University of Health Sciences, Ankara, Turkey
Hasan Candas Kafali
Affiliation:
Department of Paediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
Fatma Sevinc Sengul
Affiliation:
Department of Paediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
Sertac Haydin
Affiliation:
Department of Paediatric Cardiovascular Surgery, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
Senem Ozgur
Affiliation:
Department of Paediatric Cardiology, Etlik City Hospital, University of Health Sciences, Ankara, Turkey
Alper Guzeltas
Affiliation:
Department of Paediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
Yakup Ergul
Affiliation:
Department of Paediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
*
Corresponding author: Gulhan Tunca Sahin; Email: [email protected]

Abstract

Aim:

This study aims to evaluate the clinical characteristics and outcomes of children diagnosed with sinus node dysfunction.

Methods:

This was a retrospective review of patients diagnosed with sinus node dysfunction in two tertiary paediatric cardiology centres in Turkey from January 2011 to June 2022.

Results:

In all, 77 patients (50, 64.9% males) were included, with a mean age of 8.2 ± 6.3 years and a mean weight of 28.2 ± 18.8 kg. While age-incompatible bradycardia and pauses were the most common rhythm disturbances, syncope, presyncope, and dizziness (n:33, 43%) were the most frequent initial symptoms. Structural heart disease was present in 58 (75.3%) of the 77 patients, 47 (61%) of whom were congenital. The most commonly associated CHDs were transposition of the great arteries (n:8), atrial septal defect (n:7), and atrioventricular septal defect (n:5). Seven of them also had left atrial isomerism. The remaining 19 patients were isolated. Four patients had SCN5A mutation (two of them were siblings) and two of them had Emery–Dreifuss muscular dystrophy.

Conclusion:

Although sinus node dysfunction is rare in children, it has been diagnosed with increasing frequency with structural heart disease, especially in patients who have undergone corrective cardiac surgery related to atrial tissue. Since sinus node dysfunction can occur at any time postoperatively, these patients should be kept under constant control. If symptomatic sinus node dysfunction is confirmed, permanent pacing is an effective therapeutic modality.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Kusumoto, FM, et al. ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Circulation 2019; 140 (8): e382e482.Google Scholar
Paridon, SM, et al. Clinical stress testing in the paediatric age group: a statement from the American heart association council on cardiovascular disease in the young, committee on atherosclerosis, Hypertension and Obesity in Youth. Circulation 2006; 113 (15): 19051920.CrossRefGoogle Scholar
Kardelen, F, et al. Sinus node dysfunction in children and adolescents: treatment by implantation of a permanent pacemaker in 26 patients. Turk J Pediatr 2002; 44 (4): 312316.Google ScholarPubMed
Turina, M, et al. Long-term outlook after atrial correction of transposition of great arteries. J Thorac Cardiovasc Surg 1988; 95 (5): 828835.CrossRefGoogle ScholarPubMed
Albin, G, Hayes, DL, Holmes, DR Jr. Sinus node dysfunction in paediatric and young adult patients: treatment by implantation of a permanent pacemaker in 39 cases. Mayo Clin Proc 1985; 60 (10): 667672 CrossRefGoogle Scholar
Celiker, A, Oto, A, Ozme, S. Familial sick sinus syndrome in two siblings. Turk J Pediatr 1993; 35 (1): 5964.Google ScholarPubMed
Wilde, AAM, Amin, AS. Clinical spectrum of SCN5A mutations: long QT syndrome, brugada syndrome, and Cardiomyopathy. JACC Clin Electrophysiol 2018; 4 (5): 569579.CrossRefGoogle ScholarPubMed
Alkorashy, M, et al. A novel homozygous SCN5A variant detected in sick sinus syndrome. Pacing Clin Electrophysiol 2021; 44 (2): 380384.CrossRefGoogle ScholarPubMed
Loomba, RS, et al. Chronic arrhythmias in the setting of heterotaxy: differences between right and left isomerism. Congenit Heart Dis 2016; 11 (1): 718.CrossRefGoogle ScholarPubMed
Momma, K, Shibata, T. Characteristics and natural history of abnormal atrial rhythms in left isomerism. Am J Cardiol 1990; 65 (3): 231236.CrossRefGoogle ScholarPubMed
Ozawa, Y, et al. Cardiac rhythm disturbances in heterotaxy syndrome. Pediatr Cardiol 2019; 40 (5): 909913.CrossRefGoogle ScholarPubMed
Kovalchuk, T, et al. Case reports: emery-dreifuss muscular dystrophy presenting as a heart rhythm disorders in children. Front Cardiovasc Med 2021; 8: 668231.CrossRefGoogle ScholarPubMed
Semelka, M, Gera, J, Usman, S. Sick sinus syndrome: a review. Am Fam Physician 2013; 87 (10): 691696.Google ScholarPubMed
Shah, MJ, et al. PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in paediatric patients. Heart Rhythm 2021; 18 (11): 18881924.CrossRefGoogle Scholar
Andersen, HR, et al. Long-term follow-up of patients from a randomized trial of atrial versus ventricular pacing for sick-sinus syndrome. Lancet 1997; 350 (9086): 12101216.CrossRefGoogle ScholarPubMed
Lamas, GA, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med 2002; 346 (24): 18541862.CrossRefGoogle ScholarPubMed
Fleischmann, KE, et al. Pacemaker implantation and quality of life in the mode selection trial (MOST). Heart Rhythm 2006; 3 (6): 653659.CrossRefGoogle ScholarPubMed
Sharma, AD, et al. Percent right ventricular pacing predicts outcomes in the DAVID trial. Heart Rhythm 2005; 2 (8): 830834.CrossRefGoogle ScholarPubMed
Lamas, GA, et al. Impact of rate-modulated pacing on quality of life and exercise capacity—Evidence from the advanced elements of pacing randomized controlled trial (ADEPT). Heart Rhythm 2007; 4 (9): 11251132.CrossRefGoogle ScholarPubMed