Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T08:15:22.014Z Has data issue: false hasContentIssue false

The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review

Published online by Cambridge University Press:  02 November 2021

Stephanie M. Helman*
Affiliation:
Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, PA, USA
Elizabeth A. Herrup
Affiliation:
Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
Adam B. Christopher
Affiliation:
Division of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
Salah S. Al-Zaiti
Affiliation:
Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, PA, USA Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA
*
Author for correspondence: S. Helman, PhD(c), RN, CCRN-K, CCNS, Department of Acute and Tertiary Care Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA 15213, USA. Tel: +1 215-760-9725. E-mail: [email protected]

Abstract

Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.

Type
Review
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gharehbaghi, A, Dutoit, T, Sepehri, AA, Kocharian, A, Lindén, M. A novel method for screening children with isolated bicuspid aortic valve. Cardiovascular engineering and technology 2015; 6: 546556.10.1007/s13239-015-0238-6CrossRefGoogle ScholarPubMed
Yasaka, K, Abe, O. Deep learning and artificial intelligence in radiology: current applications and future directions. Plos Med 2018; 15: e1002707.10.1371/journal.pmed.1002707CrossRefGoogle ScholarPubMed
Bien, N, Rajpurkar, P, Ball, RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. Plos Med 2018; 15: e1002699.10.1371/journal.pmed.1002699CrossRefGoogle ScholarPubMed
Hosny, A, Parmar, C, Coroller, TP, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. Plos Med 2018; 15: e1002711.10.1371/journal.pmed.1002711CrossRefGoogle ScholarPubMed
Kather, JN, Krisam, J, Charoentong, P, et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. Plos Med 2019; 16: e1002730.10.1371/journal.pmed.1002730CrossRefGoogle ScholarPubMed
Rajpurkar, P, Irvin, J, Ball, RL, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. Plos Med 2018; 15: e1002686.10.1371/journal.pmed.1002686CrossRefGoogle ScholarPubMed
Taylor, AG, Mielke, C, Mongan, J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: a retrospective study. Plos Med 2018; 15: e1002697.10.1371/journal.pmed.1002697CrossRefGoogle ScholarPubMed
Zech, JR, Badgeley, MA, Liu, M, Costa, AB, Titano, JJ, Oermann, EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. Plos Med 2018; 15: e1002683.10.1371/journal.pmed.1002683CrossRefGoogle ScholarPubMed
Oster, ME, Lee, KA, Honein, MA, Riehle-Colarusso, T, Shin, M, Correa, A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013; 131: e15021508.10.1542/peds.2012-3435CrossRefGoogle ScholarPubMed
Reller, MD, Strickland, MJ, Riehle-Colarusso, T, Mahle, WT, Correa, A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. The Journal of pediatrics 2008; 153: 807813.10.1016/j.jpeds.2008.05.059CrossRefGoogle Scholar
Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. Journal of the American College of Cardiology 2002; 39: 18901900.10.1016/S0735-1097(02)01886-7CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention Congential Heart Defects 2019. 2020. Accessed February 28, 2020. Available at: https://www.cdc.gov/ncbddd/heartdefects/data.html.Google Scholar
Centers for Disease Control and Prevention National Birth Defects Prevention Study. 2020. Accessed July 24, 2020. Available at: https://www.cdc.gov/ncbddd/birthdefects/nbdps.html.Google Scholar
Ailes, EC, Gilboa, SM, Riehle-Colarusso, T, et al. Prenatal diagnosis of nonsyndromic congenital heart defects. Prenatal diagnosis 2014; 34: 214222.10.1002/pd.4282CrossRefGoogle ScholarPubMed
Udine, MEF, Burns, K, Pearson, G, Kaltman, J. 269 - Geographic Variation in Infant Mortality Due to Congenital Heart Disease. In Virtual. American Heart Association- Scientific Sessions, Paper presented at, November 13, 2020.Google Scholar
Tricco, AC, Lillie, E, Zarin, W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine 2018; 169: 467473.10.7326/M18-0850CrossRefGoogle ScholarPubMed
Garrard, J. Health sciences literature review made easy: The matrix method. 5th edn. Jones & Bartlett, Burlington, MA, 2017.Google Scholar
Norgeot, B, Quer, G, Beaulieu-Jones, BK, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med 2020; 26: 13201324.10.1038/s41591-020-1041-yCrossRefGoogle ScholarPubMed
Diller, GP, Lammers, AE, Babu-Narayan, S, et al. Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning algorithms. The international journal of cardiovascular imaging 2019; 35: 21892196.10.1007/s10554-019-01671-0CrossRefGoogle ScholarPubMed
Sun, S, Wang, H. Principal component analysis-based features generation combined with ellipse models-based classification criterion for a ventricular septal defect diagnosis system. Australasian physical & engineering sciences in medicine 2018; 41: 821836.10.1007/s13246-018-0676-1CrossRefGoogle ScholarPubMed
Meza, JM, Slieker, M, Blackstone, EH, et al. A novel, data-driven conceptualization for critical left heart obstruction. Computer methods and programs in biomedicine 2018; 165: 107116.10.1016/j.cmpb.2018.08.014CrossRefGoogle ScholarPubMed
Gharehbaghi, A, Lindén, M, Babic, A. A decision support system for cardiac disease diagnosis based on machine learning methods. Studies in health technology and informatics 2017; 235: 4347.Google ScholarPubMed
Pereira, F, Bueno, A, Rodriguez, A, et al. Automated detection of coarctation of aorta in neonates from two-dimensional echocardiograms. Journal of medical imaging (Bellingham, Wash) 2017; 4: 014502.10.1117/1.JMI.4.1.014502CrossRefGoogle ScholarPubMed
Bruse, JL, Zuluaga, MA, Khushnood, A, et al. Detecting clinically meaningful shape clusters in medical image data: metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches. IEEE transactions on bio-medical engineering 2017; 64: 23732383.10.1109/TBME.2017.2655364CrossRefGoogle ScholarPubMed
Diller, GP, Babu-Narayan, S, Li, W, et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle. European heart journal cardiovascular Imaging 2019; 20: 925931.10.1093/ehjci/jey211CrossRefGoogle ScholarPubMed
Gharehbaghi, A, Sepehri, AA, Lindén, M, Babic, A. Intelligent phonocardiography for screening ventricular septal defect using time growing neural network. Studies in health technology and informatics 2017; 238: 108111.Google ScholarPubMed
Elgendi, M, Bobhate, P, Jain, S, et al. The voice of the heart: Vowel-Like sound in pulmonary artery hypertension. Diseases (Basel, Switzerland) 2018; 6: 26.Google ScholarPubMed
Hauptmann, A, Arridge, S, Lucka, F, Muthurangu, V, Steeden, JA. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magnetic resonance in medicine 2019; 81: 11431156.10.1002/mrm.27480CrossRefGoogle ScholarPubMed
Aziz, S, Khan, MU, Alhaisoni, M, Akram, T, Altaf, M. Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features. Sensors (Basel, Switzerland) 2020; 20: 3790.10.3390/s20133790CrossRefGoogle ScholarPubMed
Gharehbaghi, A, Sepehri, AA, Babic, A. Distinguishing septal heart defects from the valvular regurgitation using intelligent phonocardiography. Studies in health technology and informatics 2020; 270: 178182.Google ScholarPubMed
Karimi-Bidhendi, S, Arafati, A, Cheng, AL, Wu, Y, Kheradvar, A, Jafarkhani, H. Fully‐automated deep‐learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance 2020; 22: 80.10.1186/s12968-020-00678-0CrossRefGoogle ScholarPubMed
Lu, Y, Fu, X, Li, X, Qi, Y. Cardiac Chamber Segmentation Using Deep Learning on Magnetic Resonance Images from Patients Before and After Atrial Septal Occlusion Surgery. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2020, 2020, 12111216.Google Scholar
Wang, J, Liu, X, Wang, F, et al. Automated interpretation of congenital heart disease from multi-view echocardiograms. Med Image Anal 2020; 69: 101942.10.1016/j.media.2020.101942CrossRefGoogle ScholarPubMed
Gómez-Quintana, S, Schwarz, CE, Shelevytsky, I, et al. A framework for AI-Assisted detection of patent ductus arteriosus from neonatal phonocardiogram. Healthcare (Basel, Switzerland) 2021; 9(2):169.Google ScholarPubMed
Tandon, A, Mohan, N, Jensen, C, et al. Retraining convolutional neural networks for specialized cardiovascular imaging tasks: lessons from tetralogy of fallot. Pediatr Cardiol 2021; 42: 578589.10.1007/s00246-020-02518-5CrossRefGoogle ScholarPubMed
Thompson, WR, Reinisch, AJ, Unterberger, MJ, Schriefl, AJ. Artificial intelligence-Assisted auscultation of heart murmurs: validation by virtual clinical trial. Pediatric cardiology 2019; 40: 623629.10.1007/s00246-018-2036-zCrossRefGoogle ScholarPubMed
Lv, J, Dong, B, Lei, H, et al. Artificial intelligence-assisted auscultation in detecting congenital heart disease. European Heart Journal - Digital Health 2021; 2: 119124.10.1093/ehjdh/ztaa017CrossRefGoogle Scholar
Ruiz, VM, Saenz, L, Lopez-Magallon, A, et al. Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data. The Journal of thoracic and cardiovascular surgery 2019; 158: 234243.e233.10.1016/j.jtcvs.2019.01.130CrossRefGoogle ScholarPubMed
Luo, Y, Li, Z, Guo, H, et al. Predicting congenital heart defects: a comparison of three data mining methods. PloS one 2017; 12: e0177811.10.1371/journal.pone.0177811CrossRefGoogle ScholarPubMed
Gharehbaghi, A, Borga, M, Sjöberg, BJ, Ask, P. A novel method for discrimination between innocent and pathological heart murmurs. Medical engineering & physics 2015; 37: 674682.10.1016/j.medengphy.2015.04.013CrossRefGoogle ScholarPubMed
Miller, R, Tumin, D, Cooper, J, Hayes, D Jr., Tobias, JD. Prediction of mortality following pediatric heart transplant using machine learning algorithms. Pediatr Transplant 2019; 23: e13360.10.1111/petr.13360CrossRefGoogle ScholarPubMed
Jalali, A, Simpao, AF, Gálvez, JA, Licht, DJ, Nataraj, C. Prediction of periventricular leukomalacia in neonates after cardiac surgery using machine learning algorithms. J Med Syst 2018; 42: 177.10.1007/s10916-018-1029-zCrossRefGoogle ScholarPubMed
Samad, MD, Wehner, GJ, Arbabshirani, MR, et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of fallot using machine learning. European heart journal cardiovascular Imaging 2018; 19: 730738.10.1093/ehjci/jey003CrossRefGoogle ScholarPubMed
Diller, GP, Orwat, S, Vahle, J, et al. Prediction of prognosis in patients with tetralogy of fallot based on deep learning imaging analysis. Heart (British Cardiac Society) 2020; 106: 10071014.Google ScholarPubMed
Ruiz-Fernández, D, Monsalve Torra, A, Soriano-Payá, A, Marín-Alonso, O, Triana Palencia, E. Aid decision algorithms to estimate the risk in congenital heart surgery. Computer methods and programs in biomedicine 2016; 126: 118127.10.1016/j.cmpb.2015.12.021CrossRefGoogle ScholarPubMed
Dimopoulos, AC, Nikolaidou, M, Caballero, FF, et al. Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk. Bmc Med Res Methodol 2018; 18: 179.10.1186/s12874-018-0644-1CrossRefGoogle ScholarPubMed
Liem, DA, Murali, S, Sigdel, D, et al. Phrase mining of textual data to analyze extracellular matrix protein patterns across cardiovascular disease. American journal of physiology Heart and circulatory physiology 2018; 315: H910h924.CrossRefGoogle ScholarPubMed
Boskovski, MT, Homsy, J, Nathan, M, etal, De Novo Damaging Variants. Clinical phenotypes, and Post-Operative outcomes in congenital heart disease. Circulation Genomic and precision medicine 2020; 13: e002836.10.1161/CIRCGEN.119.002836CrossRefGoogle ScholarPubMed
Huang, L, Li, J, Huang, M, et al. Prediction of pulmonary pressure after Glenn shunts by computed tomography-based machine learning models. European radiology 2020; 30: 13691377.10.1007/s00330-019-06502-3CrossRefGoogle ScholarPubMed
Jalali, A, Lonsdale, H, Do, N, et al. Deep learning for improved risk prediction in surgical outcomes. Sci Rep-UK 2020; 10: 9289.CrossRefGoogle ScholarPubMed
Toba, S, Mitani, Y, Yodoya, N, et al. Prediction of pulmonary to systemic flow ratio in patients with congenital heart disease using deep learning-Based analysis of chest radiographs. JAMA cardiology 2020; 5: 449457.10.1001/jamacardio.2019.5620CrossRefGoogle ScholarPubMed
Cainelli, E, Bisiacchi, PS, Cogo, P, et al. Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach. Sci Rep-UK 2021; 11: 2574.CrossRefGoogle ScholarPubMed
Diller, GP, Kempny, A, Babu-Narayan, SV, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients. European heart journal 2019; 40: 10691077.CrossRefGoogle ScholarPubMed
Wolf, MJ, Lee, EK, Nicolson, SC, et al. Rationale and methodology of a collaborative learning project in congenital cardiac care. American heart journal 2016; 174: 129137.CrossRefGoogle ScholarPubMed
Wang, L, Javadekar, N, Rajagopalan, A, et al. Eligibility for subcutaneous implantable cardioverter-defibrillator in congenital heart disease. Heart rhythm 2020; 17: 860869.10.1016/j.hrthm.2020.01.016CrossRefGoogle ScholarPubMed
Ma, Y, Alhrishy, M, Narayan, SA, Mountney, P, Rhode, KS. A novel real-time computational framework for detecting catheters and rigid guidewires in cardiac catheterization procedures. Medical physics 2018; 45: 50665079.CrossRefGoogle ScholarPubMed
Kan, CD, Wang, JN, Lin, CH, et al. Handmade trileaflet valve design and validation for patch-valved conduit reconstruction using generalized regression machine learning model. Technology and health care : official journal of the European Society for Engineering and Medicine 2018; 26: 605620.CrossRefGoogle ScholarPubMed
Liu, X, Aslan, S, Hess, R, et al. Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2020, 2020, 23192323.Google Scholar
Liu, M, Zhao, L, Yuan, J. Establishment of relational model of congenital heart disease markers and GO functional analysis of the association between its serum markers and susceptibility genes. Comput Math Method M 2016; 2016: 9506829–14.Google ScholarPubMed
Gopalakrishnan, V, Menon, PG, cMRI-BED, Madan S. A novel informatics framework for cardiac MRI biomarker extraction and discovery applied to pediatric cardiomyopathy classification. Biomed Eng Online 2015; 14 Suppl 2: S7.10.1186/1475-925X-14-S2-S7CrossRefGoogle ScholarPubMed
Liu, H, Zhang, CH, Ammanamanchi, N, et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci Transl Med 2019; 11: eaaw6419.CrossRefGoogle ScholarPubMed
Troisi, J, Cavallo, P, Richards, S, et al. Noninvasive screening for congenital heart defects using a serum metabolomics approach. Prenatal Diag 2021; 41: 743753.CrossRefGoogle ScholarPubMed
Qi, H, Zhang, H, Zhao, Y, et al. MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun 2021; 12: 510.CrossRefGoogle ScholarPubMed
Ren, Z, Zhu, J, Gao, Y, et al. Maternal exposure to ambient PM(10) during pregnancy increases the risk of congenital heart defects: evidence from machine learning models. The Science of the total environment 2018; 630: 110.CrossRefGoogle Scholar
Chu, R, Chen, W, Song, G, et al. Predicting the risk of adverse events in pregnant women with congenital heart disease. J Am Heart Assoc 2020; 9: e016371.CrossRefGoogle ScholarPubMed
Dozen, A, Komatsu, M, Sakai, A, et al. Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-Series information. Biomolecules 2020; 10: 1526.CrossRefGoogle ScholarPubMed
Klein, AZ, Sarker, A, Cai, H, Weissenbacher, D, Gonzalez-Hernandez, G. Social media mining for birth defects research: a rule-based, bootstrapping approach to collecting data for rare health-related events on twitter. Journal of biomedical informatics 2018; 87: 6878.CrossRefGoogle ScholarPubMed
Kagiyama, N, Shrestha, S, Farjo, PD, Sengupta, PP. Artificial intelligence: practical primer for clinical research in cardiovascular disease. J Am Heart Assoc 2019; 8: e012788.CrossRefGoogle ScholarPubMed
Mahle, WT, Sutherland, JL, Frias, PA. Outcome of isolated bicuspid aortic valve in childhood. The Journal of pediatrics 2010; 157: 445449.CrossRefGoogle ScholarPubMed
Marinho, J, Pires, A, Sousa, G, Castela, E. Right subclavian artery aneurysm in an adolescent with a bicuspid aortic valve. Pediatric cardiology 2013; 34: 19521954.10.1007/s00246-012-0502-6CrossRefGoogle Scholar
Siu, SC, Silversides, CK. Bicuspid aortic valve disease. Journal of the American College of Cardiology 2010; 55: 27892800.10.1016/j.jacc.2009.12.068CrossRefGoogle ScholarPubMed
Spaziani, G, Ballo, P, Favilli, S, et al. Clinical outcome, valve dysfunction, and progressive aortic dilation in a pediatric population with isolated bicuspid aortic valve. Pediatric cardiology 2014; 35: 803809.CrossRefGoogle Scholar
Rubinstein, R. The Cross-Entropy method for combinatorial and continuous optimization. Methodology And Computing In Applied Probability 1999; 1: 127190.CrossRefGoogle Scholar
Chen, C, Qin, C, Qiu, H, et al. Deep learning for cardiac image segmentation: a review. Frontiers in Cardiovascular Medicine 2020; 7: 187.10.3389/fcvm.2020.00025CrossRefGoogle ScholarPubMed
Zeleznik, R, Weiss, J, Taron, J, et al. Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer. NPJ digital medicine 2021; 4: 43.CrossRefGoogle ScholarPubMed
Diller, GP, Vahle, J, Radke, R, et al. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease. BMC Med Imaging 2020; 20: 113.10.1186/s12880-020-00511-1CrossRefGoogle ScholarPubMed
Hughes, JW, Olgin, JE, Avram, R, et al. Performance of a convolutional neural network and explainability technique for 12-Lead electrocardiogram interpretation 2021. JAMA cardiology.CrossRefGoogle Scholar
Bose, E, Hoffman, L, Hravnak, M. Monitoring cardiorespiratory instability: current approaches and implications for nursing practice. Intensive & critical care nursing 2016; 34: 7380.CrossRefGoogle ScholarPubMed
Kause, J, Smith, G, Prytherch, D, et al. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom--the ACADEMIA study. Resuscitation 2004; 62: 275282.CrossRefGoogle ScholarPubMed
Czapp, P, Kovach, K. Poverty and health- the family medicine perspective (Position paper) 2015. Accessed January 2, 2021. Available at: https://www.aafp.org/about/policies/all/poverty-health.html.Google Scholar
Macintyre, S, Ellaway, A, Cummins, S. Place effects on health: how can we conceptualise, operationalise and measure them? Soc Sci Med 2002; 55: 125139.10.1016/S0277-9536(01)00214-3CrossRefGoogle Scholar
Du, Y, Huang, S, Huang, C, Maalla, A, Liang, H. Recognition of Child Congenital Heart Disease using Electrocardiogram based on Residual of Residual Network. In: Paper presented at: 2020 IEEE International Conference on Progress in Informatics and Computing (PIC); 18-20 Dec. 2020, 2020 CrossRefGoogle Scholar
Bouzid, Z, Faramand, Z, Gregg, RE, et al. In search of an optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the emergency department. J Am Heart Assoc 2021; 10: e017871.10.1161/JAHA.120.017871CrossRefGoogle Scholar
Al-Zaiti, S, Besomi, L, Bouzid, Z, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat Commun 2020; 11: 3966.10.1038/s41467-020-17804-2CrossRefGoogle ScholarPubMed