Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T04:06:08.106Z Has data issue: false hasContentIssue false

Protecting the heart and other organs after cardiac surgery: old problems, new solutions?

Published online by Cambridge University Press:  20 January 2005

Andrew N. Redington
Affiliation:
Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Bonham Carter Lecture
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyd AD, Tremblay RE, Spencer FC, Bahnson HT. Estimation of cardiac output soon after intracardiac surgery with cardiopulmonary bypass. Ann Surg 1959; 150: 613626.Google Scholar
Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 2003; 75: S715S720.Google Scholar
Chaturvedi RR, Lincoln C, Gothard J, Scallan M, White P, Shore D, Redington A. Left ventricular dysfunction after open repair of simple congenital heart defects. J Thorac Cardiovasc Surg 1998; 116: 881884.Google Scholar
Bellinger DC, Jonas RA, Rappaport LA, Wypij D, Wernovsky G, Kuban KC, Barnes PD, Holmes GL, Hickey PR, Strand RD, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995; 332: 549555.Google Scholar
Wessel DL, Adatia I, Giglia TM, Thompson JE, Kulik TJ. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation 1993; 88: 21282138.Google Scholar
Schulze-Neick I, Penny DJ, Rigby ML, Morgan C, Kelleher A, Collins P, Li J, Bush A, Shinebourne EA, Redington AN. L-arginine and substance P reverse the pulmonary endothelial dysfunction caused by congenital heart surgery. Circulation 1999; 100: 749755.Google Scholar
Schulze-Neick I, Hartenstein P, Li J, Stiller B, Nagdyman N, Hubler M, Butrous G, Petros A, Lange P, Redington AN. Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 2003; 108 (Suppl 1): II167II173.Google Scholar
Tchervenkov CI, Korkola SJ, Shum-Tim D, Calaritis C, Laliberte E, Reyes TU, Lavoie J. Neonatal aortic arch reconstruction avoiding circulatory arrest and direct arch vessel cannulation. Ann Thorac Surg 2001; 72: 16151620.Google Scholar
Suzuki T, Fukuda T, Ito T, Inoue Y, Cho Y, Kashima I. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants. Ann Thorac Surg 2000; 69: 602606.Google Scholar
Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67: 10161023.Google Scholar
Verma S, Fedak PW, Weisel RD, Butany J, Rao V, Maitland A, Li RK, Dhillon B, Yau TM. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 2002; 105: 23322336.Google Scholar
Naik SK, Elliott MJ. Ultrafiltration and paediatric cardiopulmonary bypass. Perfusion 1993; 8: 101112.Google Scholar
Gaynor JW. The effect of modified ultrafiltration on the postoperative course in patients with congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2003; 6: 128139.Google Scholar
Chaturvedi RR, Shore DF, White PA, Scallan MH, Gothard JW, Redington AN, Lincoln C. Modified ultrafiltration improves global left ventricular systolic function after open-heart surgery in infants and children. Eur J Cardiothorac Surg 1999; 15: 742746.Google Scholar
Brix-Christensen V, Vestergaard C, Chew M, Johnsen CK, Andersen SK, Dreyer K, Hjortdal VE, Ravn HB, Tonnesen E. Plasma cytokines do not reflect expression of pro- and anti-inflammatory cytokine mRNA at organ level after cardiopulmonary bypass in neonatal pigs. Acta Anaesthesiol Scand 2003; 47: 525531.Google Scholar
Wernovsky G, Wypij D, Jonas RA, Mayer JE Jr, Hanley FL, Hickey PR, Walsh AZ, Chang AC, Castaneda AR, Newburger JW, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 1995; 92: 22262235.Google Scholar
Li JS, Bengur AR, Ungerleider RM, Herlong JR, Sanders SP. Abnormal left ventricular filling after neonatal repair of congenital heart disease: association with increased mortality and morbidity. Am Heart J 1998; 136: 10751080.Google Scholar
Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 1995; 91: 17821789.Google Scholar
Chaturvedi RR, Shore DF, Lincoln C, Mumby S, Kemp M, Brierly J, Petros A, Gutteridge JM, Hooper J, Redington AN. Acute right ventricular restrictive physiology after repair of tetralogy of Fallot: association with myocardial injury and oxidative stress. Circulation 1999; 100: 15401547.Google Scholar
Chaturvedi RR, Hjortdal VE, Stenbog EV, Ravn HB, White P, Christensen TD, Thomsen AB, Pedersen J, Sorensen KE, Redington AN. Inhibition of nitric oxide synthesis improves left ventricular contractility in neonatal pigs late after cardiopulmonary bypass. Heart 1999; 82: 740744.Google Scholar
Vogel M, Cheung MM, Li J, Kristiansen SB, Schmidt MR, White PA, Sorensen K, Redington AN. Noninvasive assessment of left ventricular force–frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation 2003; 107: 16471652.Google Scholar
Vogel M, Schmidt MR, Kristiansen SB, Cheung M, White PA, Sorensen K, Redington AN. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure–volume relations in an animal model. Circulation 2002; 105: 16931699.Google Scholar
Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G. Alterations in intracellular calcium handling associated with the inverse force–frequency relation in human dilated cardiomyopathy. Circulation 1995; 92: 11691178.Google Scholar
Caspi J, Coles JG, Benson LN, Herman SL, Diaz RJ, Augustine J, Brezina A, Kolin A, Wilson GJ. Age-related response to epinephrine-induced myocardial stress. A functional and ultrastructural study. Circulation 1991; 84 (Suppl): III394III399.Google Scholar
Penny DJ, Sano T, Smolich JJ. Increased systemic oxygen consumption offsets improved oxygen delivery during dobutamine infusion in newborn lambs. Intensive Care Med 2001; 27: 15181525.Google Scholar
Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, Bailey JM, Akbary A, Kocsis JF, Kaczmarek R, Spray TL, Wessel DL. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 2003; 107: 9961002.Google Scholar
Li J, Schulze-Neick I, Lincoln C, Shore D, Scallan M, Bush A, Redington AN, Penny DJ. Oxygen consumption after cardiopulmonary bypass surgery in children: determinants and implications. J Thorac Cardiovasc Surg 2000; 119: 525533.Google Scholar
Bolling SF, Su TP, Childs KF, Ning XH, Horton N, Kilgore K, Oeltgen PR. The use of hibernation induction triggers for cardiac transplant preservation. Transplantation 1997; 63: 326329.Google Scholar
Kevelaitis E, Peynet J, Mouas C, Launay JM, Menasche P. Opening of potassium channels: the common cardioprotective link between preconditioning and natural hibernation? Circulation 1999; 99: 30793085.Google Scholar
Cleveland JC Jr, Raeburn C, Harken AH. Clinical applications of ischemic preconditioning: from head to toe. Surgery 2001; 129: 664667.Google Scholar
Matsuda M, Catena TG, Vander Heide RS, Jennings RB, Reimer KA. Cardiac protection by ischaemic preconditioning is not mediated by myocardial stunning. Cardiovasc Res 1993; 27: 585592.Google Scholar
Tomai F, Crea F, Chiariello L, Gioffre PA. Ischemic preconditioning in humans: models, mediators, and clinical relevance. Circulation 1999; 100: 559563.Google Scholar
Jenkins DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 1997; 77: 314318.Google Scholar
Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993; 87: 893899.Google Scholar
Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, Inubushi T, Kinoshita M. Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of “remote preconditioning”. J Am Coll Cardiol 1999; 33: 556564.Google Scholar
Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002; 106: 28812883.Google Scholar