Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T05:24:49.784Z Has data issue: false hasContentIssue false

Paediatric dilated cardiomyopathy with and without endocardial fibroelastosis – a pathological analysis of 89 explants

Published online by Cambridge University Press:  06 September 2021

Jeanette A. Reyes*
Affiliation:
Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
Anne I. Dipchand
Affiliation:
Heart Centre – Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Canada
David A. Chiasson
Affiliation:
Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
*
Author for correspondence: J. A. Reyes, Department of Paediatric Laboratory Medicine, Division of Pathology, Hospital for Sick Children, 555 University, Avenue, Room 3133A – Elm Wing, Toronto, Ontario, Canada. Tel: 416-813-5973. E-mail: [email protected]

Abstract

Heart failure due to dilated cardiomyopathy is a major indication for paediatric cardiac transplantation. Endocardial fibroelastosis is a recognised pathological finding of unknown prognostic significance in paediatric dilated cardiomyopathy. To evaluate the nature of the association between left ventricular endocardial fibroelastosis and paediatric dilated cardiomyopathy, we reviewed surgical pathology reports of dilated cardiomyopathy explants (1986–2016) in order to characterise the pathological findings and to compare and contrast their frequency among four age groups: less than 1 year; 1–5 years; 6–10 years; and greater than 11 years. The 89 explants (47 males and 42 females) were all characterised by increased weight and left ventricular chamber dilatation without increased wall thickness. Ninety-five per cent of the specimens in the two youngest subsets had left ventricular endocardial fibroelastosis. Compared to the oldest age group, recipients aged 1–5 years had a 6-fold increase and those younger than 1 year a 19-fold increase in the odds of observing left ventricular endocardial fibroelastosis. Explants with and without endocardial fibroelastosis were otherwise phenotypically similar. In paediatric dilated cardiomyopathy endocardial fibroelastosis is a very common pathological finding, especially in infants and young children. We propose that the descriptive, clinico-pathological designation “Dilated Cardiomyopathy with Endocardial Fibroelastosis” should be adopted to facilitate future investigation into the potential prognostic/therapeutic significance of left ventricular endocardial fibroelastosis.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maron, BJ, Towbin, JA, Thiene, G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113: 18071816. DOI 10.1161/CIRCULATIONAHA.106.174287. Epub 2006 Mar 27.10.1161/CIRCULATIONAHA.106.174287CrossRefGoogle ScholarPubMed
Kirk, R. ISHLT Guidelines for the management of pediatric heart failure. In: Dipchand, AI, Rosenthal, DN, ISHLT Monograph Series, 8, International Society for Heart and Lung Transplantation, Addison, TX, 2014.Google Scholar
Braunwald, E. Cardiomyopathies: an overview. Circ Res 2017; 121: 711721. DOI 10.1161/CIRCRESAHA.117.311812.10.1161/CIRCRESAHA.117.311812CrossRefGoogle ScholarPubMed
Lee, TM, Hsu, DT, Kantor, P, et al. Pediatric cardiomyopathies. Circ Res 2017; 121: 855873. DOI 10.1161/CIRCRESAHA.116.309386. 10.1161/CIRCRESAHA.116.309386CrossRefGoogle ScholarPubMed
Towbin, JA, Lowe, AM, Colan, SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006; 296: 18671876. DOI 10.1001/jama.296.15.1867.10.1001/jama.296.15.1867CrossRefGoogle ScholarPubMed
Bozkurt, B, Colvin, M, Cook, J, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 2016; 134: e579e646. DOI 10.1161/CIR.0000000000000455. Epub 2016 Nov 3.10.1161/CIR.0000000000000455CrossRefGoogle ScholarPubMed
Daubeney, PE, Nugent, AW, Chondros, P, et al. National australian childhood cardiomyopathy study. clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation 2006; 114: 26712678. DOI 10.1161/CIRCULATIONAHA.106.635128. Epub 2006 Nov 20.10.1161/CIRCULATIONAHA.106.635128CrossRefGoogle ScholarPubMed
Wilkinson, JD, Landy, DC, Colan, SD, et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin 2010; 6: 401413. DOI 10.1016/j.hfc.2010.05.002.10.1016/j.hfc.2010.05.002CrossRefGoogle ScholarPubMed
Griffin, LD, Kearney, D, Ni, J, et al. Analysis of formalin-fixed and frozen myocardial autopsy samples for viral genome in childhood myocarditis and dilated cardiomyopathy with endocardial fibroelastosis using polymerase chain reaction (PCR). Cardiovasc Pathol 1995; 4: 311. DOI 10.1016/1054-8807(94)00025-m.10.1016/1054-8807(94)00025-MCrossRefGoogle ScholarPubMed
Nugent, AW, Davis, AM, Kleinert, S, Wilkinson, JL, Weintraub, RG. Clinical, electrocardiographic, and histologic correlations in children with dilated cardiomyopathy. J Heart Lung Transplant 2001; 20: 11521157. DOI 10.1016/s1053-2498(01)00334-5.10.1016/S1053-2498(01)00334-5CrossRefGoogle ScholarPubMed
Gagliardi, MG, Fierabracci, A, Pilati, M, et al. The impact of specific viruses on clinical outcome in children presenting with acute heart failure. Int J Mol Sci 2016; 17: 486. DOI 10.3390/ijms17040486.10.3390/ijms17040486CrossRefGoogle ScholarPubMed
Venugopalan, P. Pediatric dilated cardiomyopathy, 2014. Retrieved July 28, 2020, from https://emedicine.medscape.com/article/895187-overview.Google Scholar
Hsu, DT, Canter, CE. Dilated cardiomyopathy and heart failure in children. Heart Fail Clin 2010; 6: 415432. DOI 10.1016/j.hfc.2010.05.003 vii.10.1016/j.hfc.2010.05.003CrossRefGoogle ScholarPubMed
Pahl, E, Dipchand, AI, Burch, M. Heart transplantation for heart failure in children. Heart Fail Clin 2010; 6: 575589. DOI 10.1016/j.hfc.2010.05.010.10.1016/j.hfc.2010.05.010CrossRefGoogle ScholarPubMed
Blume, ED, Naftel, DC, Bastardi, HJ, Duncan, BW, Kirklin, JK, Webber, SA. Pediatric heart transplant study investigators. outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation 2006; 113: 23132319. DOI 10.1161/CIRCULATIONAHA.105.577601.10.1161/CIRCULATIONAHA.105.577601CrossRefGoogle Scholar
Kirk, R, Naftel, D, Hoffman, TM, et al. Pediatric heart transplant study investigators. outcome of pediatric patients with dilated cardiomyopathy listed for transplant: a multi-institutional study. J Heart Lung Transp 2009; 28: 13221328. DOI 10.1016/j.healun.2009.05.027. Epub 2009 Sep 26.10.1016/j.healun.2009.05.027CrossRefGoogle Scholar
ISHLT (International Society for Heart and Lung Transplantation). Heart transplantation: pediatric recipients. JHLT 2019; 38: 10151066.Google Scholar
Lurie, PR. Changing concepts of endocardial fibroelastosis. Cardiol Young 2010; 20: 115123. DOI 10.1017/S1047951110000181. Epub 2010 Mar 29.10.1017/S1047951110000181CrossRefGoogle ScholarPubMed
Weinberg, T, Himelfarb, AJ. Endocardial fibroelastosis (so-called fetal endocarditis). a report of two cases occurring in siblings. Bull Johns Hopkins Hosp 1943; 72: 299306.Google Scholar
Noren, GR, Adams, P Jr, Anderson, RC. Positive skin reactivity to mumps virus antigen in endocardial fibroelastosis. J Pediatr 1963; 62: 604606. DOI 10.1016/s0022-3476(63)80021-9.10.1016/S0022-3476(63)80021-9CrossRefGoogle ScholarPubMed
Giacoia, GP. Cardiomyopathies of infancy. South Med J 1988; 81: 10161020. DOI 10.1097/00007611-198808000-00019.10.1097/00007611-198808000-00019CrossRefGoogle ScholarPubMed
Seki, A, Patel, S, Ashraf, S, Perens, G, Fishbein, MC. Primary endocardial fibroelastosis: an underappreciated cause of cardiomyopathy in children. Cardiovasc Pathol 2013; 22: 345350. DOI 10.1016/j.carpath.2013.02.003. Epub 2013 Mar 19.10.1016/j.carpath.2013.02.003CrossRefGoogle ScholarPubMed
Lurie, PR. Endocardial fibroelastosis is not a disease. Am J Cardiol 1988 ;62: 468470. DOI 10.1016/0002-9149(88)90981-2.10.1016/0002-9149(88)90981-2CrossRefGoogle Scholar
Chen, SC, Nouri, S, Balfour, I, Jureidini, S, Appleton, RS. Clinical profile of congestive cardiomyopathy in children. J Am Coll Cardiol 1990; 15: 189193. DOI 10.1016/0735-1097(90)90199-y.10.1016/0735-1097(90)90199-YCrossRefGoogle ScholarPubMed
Aiello, VD, de Lourdes Higuchi, M. Frequency and severity of endocardial fibroelastosis in dilated hearts from children – endocardial thickness is inversely correlated to age. Cardiol Young 1994; 4: 117121.10.1017/S1047951100002031CrossRefGoogle Scholar
Matitiau, A, Perez-Atayde, A, Sanders, SP, et al. Infantile dilated cardiomyopathy. Relation of outcome to left ventricular mechanics, hemodynamics, and histology at the time of presentation. Circulation 1994; 90: 13101318. DOI 10.1161/01.cir.90.3.1310.10.1161/01.CIR.90.3.1310CrossRefGoogle ScholarPubMed
Arola, A, Jokinen, E, Ruuskanen, O, et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am J Epidemiol 1997 ;146: 385393. DOI 10.1093/oxfordjournals.aje.a009291.10.1093/oxfordjournals.aje.a009291CrossRefGoogle ScholarPubMed
Arola, A, Tuominen, J, Ruuskanen, O, Jokinen, E. Idiopathic dilated cardiomyopathy in children: prognostic indicators and outcome. Pediatrics 1998; 101: 369376. DOI 10.1542/peds.101.3.369.10.1542/peds.101.3.369CrossRefGoogle ScholarPubMed
Crossland, DS, Edmonds, K, Rassl, D, et al. Histology of the explanted hearts of children transplanted for dilated cardiomyopathy. Pediatr Transplant 2008; 12: 8590. DOI 10.1111/j.1399-3046.2007.00804.x.10.1111/j.1399-3046.2007.00804.xCrossRefGoogle ScholarPubMed
Griffin, ML, Hernandez, A, Martin, TC, et al. Dilated cardiomyopathy in infants and children. J Am Coll Cardiol 1988; 11: 139144. DOI 10.1016/0735-1097(88)90179-9.10.1016/0735-1097(88)90179-9CrossRefGoogle ScholarPubMed
Chou, YT, Wang, JK, Chou, HC. Primary endocardial fibroelastosis with dilated cardiomyopathy: report of one case. Acta Paediatr Taiwan 2007; 48: 213216.Google ScholarPubMed
Alvarez, JA, Wilkinson, JD, Lipshultz, SE. Outcome Predictors for Pediatric Dilated Cardiomyopathy: A Systematic Review. Prog PediatrCardiol 2007; 23: 2532. DOI 10.1016/j.ppedcard.2007.05.009.Google ScholarPubMed
Takahashi, S, Kanetake, J, Moriya, T, Funayama, M. Sudden infant death from dilated cardiomyopathy with endocardial fibroelastosis. Leg Med (Tokyo) 2008; 10: 277280. DOI 10.1016/j.legalmed.2008.03.001. Epub 2008 Apr 28.10.1016/j.legalmed.2008.03.001CrossRefGoogle ScholarPubMed
Chang, KT, Taylor, GP, Meschino, WS, Kantor, PF, Cutz, E. Mitogenic cardiomyopathy: a lethal neonatal familial dilated cardiomyopathy characterized by myocyte hyperplasia and proliferation. Hum Pathol 2010; 41: 10021008. DOI 10.1016/j.humpath.2009.12.008. Epub 2010 Mar 29.10.1016/j.humpath.2009.12.008CrossRefGoogle ScholarPubMed
Arya, SO, Karpawich, PP, Gupta, P, et al. Primary endocardial fibroelastosis presenting in a young child as incessant ventricular tachycardia and dilated cardiomyopathy. Tex Heart Inst J 2012; 39: 714718.Google Scholar
Schulz, DM, Giordano, DA. Hearts of infants and children. Weights and measurements. Arch Pathol 1962; 74: 464471.Google ScholarPubMed
Kayser, K. Height and weight in human beings: autopsy report. Verlag fürangewandteWissenchaftenGmbh, München, 1987, 127p Google Scholar
Scholz, DG, Kitzman, DW, Hagen, PT, Ilstrup, DM, Edwards, WD. Age-related changes in normal human hearts during the first 10 decades of life. part I (Growth): a quantitative anatomic study of 200 specimens from subjects from birth to 19 years old. Mayo Clin Proc 1988; 63: 126136. DOI 10.1016/s0025-6196(12)64945-3.10.1016/S0025-6196(12)64945-3CrossRefGoogle ScholarPubMed
Prior, JT, Wyatt, TC. Endocardial fibro-elastosis: a study of eight cases. Am J Pathol 1950; 26: 969987.Google ScholarPubMed
Hill, WT, Reilly, WA. Endocardial fibroelastosis. AMA Am J Dis Child 1951; 82: 579586. DOI 10.1001/archpedi.1951.02040040599008.Google ScholarPubMed
Dennis, JL, Hansen, AE, Corpening, TN. Endocardial fibroelastosis. Pediatrics 1953; 12: 130140.10.1542/peds.12.2.130CrossRefGoogle ScholarPubMed
Rosahn, PD. Endocardial fibroelastosis: old and new concepts. Bull N Y Acad Med 1955; 31: 453472.Google ScholarPubMed
Kelly, J, Anderson, DH. Congenital endocardial fibro-elastosis. II. A clinical and pathologic investigation of those cases without associated cardiac malformations including report of two familial instances. Pediatrics 1956; 18: 539555.10.1542/peds.18.4.539CrossRefGoogle Scholar
Black-Schaffer, B. Infantile endocardial fibroelastosis; a suggested etiology. AMA Arch Pathol 1957; 63: 281306.Google Scholar
Still, WJS. Endocardial fibroelastosis. Am Heart J 1961; 61: 579585. DOI 10.1016/0002-8703(61)90628-7.10.1016/0002-8703(61)90628-7CrossRefGoogle Scholar
Fisher, JH. Primary endocardial fibroelastosis: a review of 15 cases. Can Med Assoc J 1962 ;87: 105109.Google ScholarPubMed
Fruhling, L, Korn, R, La Villaureix, J, Surjus, A, Foussereau, S. [Chronic fibroelastic myoendocarditis of the newborn and the infant (fibroelastosis). New morphological, etiological and pathogenic data. Relation to certain cardiac abnormalities]. In Ann AnatPathol (Paris). vol. 7, French, 1962, p. 227303.Google Scholar
St Geme, JW Jr, Peralta, H, Farias, E, Davis, CW, Noren, GR. Experimental gestational mumps virus infection and endocardial fibroelastosis. Pediatrics 1971; 48: 821826.10.1542/peds.48.5.821CrossRefGoogle ScholarPubMed
Hutchins, GM, Vie, SA. The progression of interstitial myocarditis to idiopathic endocardial fibroelastosis. Am J Pathol 1972; 66: 483496.Google ScholarPubMed
Hunter, AS, Keay, AJ. Primary endocardial fibroelastosis. An inherited condition. Arch Dis Child 1973; 48: 6669. DOI 10.1136/adc.48.1.66.10.1136/adc.48.1.66CrossRefGoogle ScholarPubMed
Schryer, MJ, Karnauchow, PN. Endocardial fibroelastosis; etiologic and pathogenetic considerations in children. Am Heart J 1974; 88: 557565. DOI 10.1016/0002-8703(74)90238-5.10.1016/0002-8703(74)90238-5CrossRefGoogle ScholarPubMed
Fishbein, MC, Ferrans, VJ, Roberts, WC. Histologic and ultrastructural features of primary and secondary endocardial fibroelastosis. Arch Pathol Lab Med 1977; 101: 4954.Google ScholarPubMed
Benson, LN, Wilson, GJ, Freedom, RM. Myocardial disorders: dilated cardiomyopathy with endocardial fibroelastosis. In: Freedom, RM, Benson, LN, Smallhorn, JF (eds). Neonatal Heart Disease. Springer-Verlag, London, New York, 1992, p. 714722.Google Scholar
Ni, J, Bowles, NE, Kim, YH, et al. Viral infection of the myocardium in endocardial fibroelastosis. Molecular evidence for the role of mumps virus as an etiologic agent. Circulation 1997 ;95: 133139. DOI 10.1161/01.cir.95.1.133.10.1161/01.CIR.95.1.133CrossRefGoogle ScholarPubMed
Nield, LE, Silverman, ED, Smallhorn, JF, et al. Endocardial fibroelastosis associated with maternal anti-Ro and anti-La antibodies in the absence of atrioventricular block. J Am Coll Cardiol 2002; 21;40: 796802. DOI 10.1016/s0735-1097(02)02004-1.10.1016/S0735-1097(02)02004-1CrossRefGoogle Scholar
Lipshultz, SE, Law, YM, Asante-Korang, A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the american heart association. Circulation 2019; 140: e9e68. DOI 10.1161/CIR.0000000000000682. Epub 2019 May 28.10.1161/CIR.0000000000000682CrossRefGoogle ScholarPubMed
Brutsaert, DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003; 83: 59115. DOI 10.1152/physrev.00017.2002.10.1152/physrev.00017.2002CrossRefGoogle ScholarPubMed
Imanaka-Yoshida, K, Aoki, H. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Front Physiol 2014 ;5: 283. DOI 10.3389/fphys.2014.00283. Retrieved July 28, 2020.Google ScholarPubMed
Ashrafian, H, Frenneaux, MP, Opie, LH. Metabolic mechanisms in heart failure. Circulation 2007 ;116: 434448. DOI 10.1161/CIRCULATIONAHA.107.702795.10.1161/CIRCULATIONAHA.107.702795CrossRefGoogle ScholarPubMed
Fan, D, Takawale, A, Lee, J, Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 2012; 5: 15. DOI 10.1186/1755-1536-5-15.10.1186/1755-1536-5-15CrossRefGoogle ScholarPubMed
Lehmann, LH, Stanmore, DA, Backs, J. The role of endothelin-1 in the sympathetic nervous system in the heart. Life Sci 2014; 118: 165172. DOI 10.1016/j.lfs.2014.03.005. Epub 2014 Mar 13.10.1016/j.lfs.2014.03.005CrossRefGoogle ScholarPubMed
Knudson, JD, Cabrera, AG. The pathophysiology of heart failure in children: the basics. Curr Cardiol Rev 2016; 12: 99103. DOI 10.2174/1573403x12666151119164525.10.2174/1573403X12666151119164525CrossRefGoogle ScholarPubMed
Zhang, H, Huang, X, Liu, K, et al. Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Res 2017; 27: 11571177. DOI 10.1038/cr.2017.103. Epub 2017 Aug 15.10.1038/cr.2017.103CrossRefGoogle Scholar