Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:06:03.390Z Has data issue: false hasContentIssue false

Noninvasive assessment of myocardial mechanics—a review of analysis of stress-shortening and stress-velocity

Published online by Cambridge University Press:  19 August 2008

Steven D. Colan*
Affiliation:
Department of Cardiology, The Children‘s Hospital and the Department of Pediatrics, Harvard Medical School, Boston
*
Dr. Steven D. Colan, Department of Cardiology, Children‘s Hospital, 300 Longwood Avenue, Boston, MA 02115USA

Abstract

The development of newer, load-independent indices of contractility has not substantially reduced general clinical reliance on ejection fraction and shortening fraction to detect abnormalities of contractility, in spite of common understanding of the preload and afterload dependence of percent fiber shortening. The more widespread application of sensitive indices of contractility has been impeded in part by complex methods of acquisition and analysis of data as well as uncertainty concerning the clinical importance of the additional derived information. Substantial recent experience with analysis of stress-shortening and stress-velocity, nonetheless, demonstrates that physiologically meaningful indices of afterload, preload, and contractility can be obtained noninvasively without hemodynamic interventions. There is extensive theoretical and experimental basis for these methods, and the limitations are similar to other global indices of myocardial mechanics. The superiority of methods which allow distinction between contractile abnormalities and abnormal load are particularly important when altered ventricular loading conditions are a prominent feature of the disease state. Several clinical situations have been identified for which analysis of stress-shortening and stress-velocity demonstrates that assessment by fiber shortening alone has resulted in misrepresentation of myocardial status. The clinical utility of assessment of ventricular function is considerably enhanced when the relative contribution of load and contractile performance is determined.

Type
Special Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Braunwald, E, Ross, J Jr. Control of cardiac performance. In: Berne, RM, Sperclakis, N, Geiger, SR (eds). Handbook of Physiology, Section 2: The Cardiovascular System, Volume 1. Williams & Wilkins, Baltimore, 1979, pp 533580.Google Scholar
2.Noble, MIM, Pollack, GH. Molecular mechanisms of contraction. Circ Res 1977; 40: 333342.CrossRefGoogle ScholarPubMed
3.Lakatta, EG. Starling law of the heart is explained by an intimate interaction of muscle length and myofilament calcium activation. J Am Coll Cardiol 1987; 10: 11571164.CrossRefGoogle ScholarPubMed
4.Hunter, WC. End-systolic pressure as a balance between opposing effects of ejection. Circ Res 1989; 64: 265275.CrossRefGoogle ScholarPubMed
5.Su, JB, Crozatier, B. Preload-induced curvilinearity of left ventricular end-systolic pressure-volume relations: Effects on derived indexes in closed-chest dogs. Circulation 1989; 79: 431440.CrossRefGoogle ScholarPubMed
6.Sugiura, S, Hunter, WC, Sagawa, K. Long-term versus intrabeat history of ejection as determinants of canine ventricular end systolic pressure. Circ Res 1989; 64: 255264.CrossRefGoogle ScholarPubMed
7.Baan, J, Van der Velde, ET. Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ Res 1988; 62: 12471258.CrossRefGoogle ScholarPubMed
8.Kass, DA, Beyar, R, Lankford, E, Heard, M, Maughan, WL, Sagawa, K. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 1989; 79: 167178.CrossRefGoogle ScholarPubMed
9.Ratshin, RA, Racldey, CE, Russell, RO Jr. Determination of left ventricular preload and afterload by quantitative echocardio-graphy in man. Circ Res 1974; 34: 711718.CrossRefGoogle Scholar
10.Weber, KT, Janicki, JS, Hunter, WC, Shroff, S, Pearlman, ES, Fishman, AP. The contractile behavior of the heart and its functional coupling to the circulation. Prog Cardiovasc Dis 1982; 24: 375400.CrossRefGoogle ScholarPubMed
11.Sandier, H, Dodge, HT. Left ventricular tension and stress in man. Circ Res 1963; 13: 91104.CrossRefGoogle Scholar
12.Mirsky, I. Left ventricular stress in the intact human heart. Biophys J 1969; 9: 189199.CrossRefGoogle ScholarPubMed
13.Mirsky, I. Review of various theories for evaluation of left ventricular wall stresses. In: Mirsky, I, Chiston, DM, Sander, j (eds). Cardiac Mechanics: Physiological, Chemical and Mathematical Considerations. John Wiley & Sons, New York, 1974, pp 381409.Google Scholar
14.Grossman, W, Jones, D, McLaurin, LP: Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975; 56: 5664.CrossRefGoogle ScholarPubMed
15.Yin, FCP. Ventricular wall stress. Circ Res 1981; 49: 830842.CrossRefGoogle ScholarPubMed
16.Huisman, RM, Elzinga, G, Westerhof, N, Sipkema, P. Measurement of left ventricular wall stress. Cardiovasc Res 1980; 14: 142153.CrossRefGoogle ScholarPubMed
17.Huisman, RM, Sipkema, P, Westerhof, N, Elzinga, G. Comparison of models used to calculate left ventricular wall force. Med Biol Eng Comput 1980; 18: 133144.CrossRefGoogle ScholarPubMed
18.Moriarity, TF. The law of Laplace. Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res 1980; 46: 321331.CrossRefGoogle Scholar
19.Colan, SD, Fujii, A, Borow, KM, MacPherson, D, Sanders, SP. Noninvasive determination of systolic, diastolic and end-systolic blood pressure in neonates, infants and young children: comparison with central aortic pressure measurements. Am J Cardiol 1983; 52: 867870.CrossRefGoogle ScholarPubMed
20.Colan, SD, Borow, KM, MacPherson, D, Sanders, SP. Use of the indirect axillary pulse tracing for noninvasive determination of ejection time, upstroke time, and left ventricular wall stress throughout ejection in infants and young children. Am J Cardiol 1984; 53: 11541158.CrossRefGoogle ScholarPubMed
21.Colan, SD, Borow, KM, Neumann, A. Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. Am Heart J 1985; 109: 13061310.CrossRefGoogle ScholarPubMed
22.Borow, KM, Colan, SD, Neumann, A. Altered left ventricular mechanics in patients with valvular aortic stenosis and coarctation of the aorta: effects on systolic performance and late outcome. Circulation 1985; 72: 515522.CrossRefGoogle ScholarPubMed
23.Sholler, GF, Colan, SD, Sanders, SP, Keane, JF. Noninvasive estimation of the left ventricular pressure waveform through-out ejection in young patients with aortic stenosis. J Am Coll Cardiol 1988; 12: 492497.CrossRefGoogle Scholar
24.Laskey, WK, Reichek, N, St John Sutton, M, Untereker, WJ, Hirshfeld, JW. Matching of myocardial oxygen consumption to mechanical load in human left ventricular hypertrophy and dysfunction. J Am Coll Cardiol 1984; 3: 291300.CrossRefGoogle ScholarPubMed
25.Weber, KT, Janicki, JS. Myocardial oxygen consumption - the role of wall force and shortening. Am J Physiol 1977; 233: H421–H477.Google ScholarPubMed
26.Strauer, BE. Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy, and coronary reserve. Am J Cardiol 1979; 44: 730740.CrossRefGoogle ScholarPubMed
27.Suga, H, Goto, Y, Nozawa, T, Yasumura, Y, Futaki, S, Tanaka, N. Force-time integral decreases with ejection despite constant oxygen consumption and pressure-volume area in dog left ventricle. Circ Res 1987; 60: 797803.CrossRefGoogle ScholarPubMed
28.Colan, SD, Sanders, SP, Borow, KM. Physiologic hypertrophy: effects on left ventricular systolic mechanics in athletes. J Am Coll Cardiol 1987; 9: 776783.CrossRefGoogle ScholarPubMed
29.Gould, KL, Lipscomb, K, Hamilton, GW, Kennedy, JW. Relation of left ventricular shape, function, and wall stress in man. Am J Cardiol 1974; 34: 627634.CrossRefGoogle ScholarPubMed
30.Grossman, W, Carabello, BA, Gunther, S, Fifer, MA. Ventricular wall stress and the development of cardiac hypertrophy and failure. In: Albert, NR (ed). Perspectives in Cardiovascular Research: Myocardial Hypertrophy and Failure. Raven Press, New York, 1983, pp 118.Google Scholar
31.Dodge, HT, Stewart, DK, Frimer, M. Implications of shape, stress, and wall dynamics in clinical heart disease. In: Fishman, AP (ed). Heart Failure. Hemisphere Publishing Corp., Washington, DC, 1978, pp 4354.Google Scholar
32.Taylor, RR, Covell, JW, Ross, J Jr. Volume-tension diagrams of ejecting and isovolumic contractions in left ventricle. Am J Physiol 1969; 216: 10971102.CrossRefGoogle ScholarPubMed
33.Suga, H, Sagawa, K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 1974; 35: 117126.CrossRefGoogle ScholarPubMed
34.Suga, H, Sagawa, K, Shoukas, AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973; 32: 314324.CrossRefGoogle ScholarPubMed
35.Suga, H, Kitabatake, A, Sagawa, K. End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ Res 1979; 44: 238249CrossRefGoogle Scholar
36.Shroff, SG, Janicki, JS, Weber, KT. Left ventricular systolic dynamics in terms of its chamber mechanical properties. Am J Physiol 1983; 245: H110–H124.Google ScholarPubMed
37.Burkhoff, D, Sugiura, S, Yue, DT, Sagawa, K. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol 1987; 252: H1218–H1227.Google ScholarPubMed
38.Little, WC, Cheng, C-P, Peterson, T, Vinten-Johansen, J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation 1988; 78: 736745.CrossRefGoogle ScholarPubMed
39.Sagawa, K, Suga, H, Shoukas, AA, Bakalar, KM. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 1977; 40: 748753.CrossRefGoogle ScholarPubMed
40.Lee, J-D, Tajimi, T, Widmann, TF, Ross, J Jr. Application of end-systolic pressure-volume and pressure-wall thickness relations in conscious dogs. J Am Coll Cardiol 1987; 9: 136146.CrossRefGoogle ScholarPubMed
41.Borow, KM, Neumann, A, Wynne, J. Sensitivity of end-systolic pressure-dimension and pressure-volume relations to the inotropic state in humans. Circulation 1982; 65: 988997.CrossRefGoogle Scholar
42.Mirsky, I, Tajimi, T, Peterson, KL. The development of the entire end-systolic pressure-volume and ejection fraction afterload relations: a new concept of systolic myocardial stiffness. Circulation 1987; 76: 343356.CrossRefGoogle ScholarPubMed
43.Kass, DA, Maughan, WL, Guo, ZM, Kono, A, Sunagawa, K, Sagawa, K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987; 76: 14221436.CrossRefGoogle ScholarPubMed
44.Kass, DA, Maughan, WL. From ‘Emax’ to pressure-volume relations: A broader view. Circulation 1988; 77: 12031212.CrossRefGoogle ScholarPubMed
45.Carabello, BA, Spann, JF. The uses and limitations of end-systolic indexes of left ventricular function. Circulation 1984; 69: 10581064.CrossRefGoogle ScholarPubMed
46.Freeman, GL, Little, WC, O‘Rourke, RA. The effect of vasoac-tive agents on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circulation 1986; 74: 11071113.CrossRefGoogle ScholarPubMed
47.Spratt, JA, Tyson, GS, Glower, DD, Davis, WJ, Muhlbaier, LH, Olsen, CO, Rankin, JS. The end-systolic pressure-volume relationship in conscious dogs. Circulation 1987; 75: 12951309.CrossRefGoogle ScholarPubMed
48.Maughan, WL, Sunagawa, K, Burkhoff, D, Sagawa, K. Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ Res 1984; 54: 595602.CrossRefGoogle ScholarPubMed
49.Crottogini, AJ, Willshaw, P, Barra, JG, Armentano, RA, Cabrera Fisher, El, Pichel, RH. Inconsistency of the slope and the volume intercept of the end-systolic pressure-volume relationship as individual indexes of inotropic state in conscious dogs: ptesentation of an index combining both variables. Circulation 1987; 76: 11151126.CrossRefGoogle Scholar
50.Colan, SD, Sanders, SP, Ingelfinger, JR, Harmon, W. Left ventricular mechanics and contractile state in children and young adults with end-stage renal disease: effect of dialysis and renal transplantation. J Am Coll Cardiol 1987; 10: 10851094.Google Scholar
51.Suga, H, Hisano, R, Goto, Y, Hamada, O. Normalization of end-systolic pressure-volume relation and Emax of different sized hearts. Jpn Circ J 1984; 48: 136143.CrossRefGoogle ScholarPubMed
52.Belcher, P, Boerboom, LE, Olinger, GN. Standardization of end-systolic pressure-volume relation in the dog. Am J Physiol 1985; 249: H547–H553.Google ScholarPubMed
53.Colan, SD, Borow, KM, Neumann, A. Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol 1984; 4: 715724.CrossRefGoogle ScholarPubMed
54.Colan, SD, Trowitzsch, E, Wernovsky, G, Sholle‘f, GF, Sanders, SP, Castaneda, AR. Myocardial performance after arterial switch operation for transposition of the great arteries with intact ventricular septum. Circulation 1988; 78: 132141.CrossRefGoogle ScholarPubMed
55.Graham, TP Jr, Franklin, RCG, Wyse, RKH, Gooch, V, Deanfield, JE. Left ventricular wall stress and contractile function in childhood: normal values and comparison of Fontan repair versus palliation only in patients with tricuspid atresia. Circulation 1986; 74: I 61–1 69.Google Scholar
56.Graham, TP Jr, Franklin, RC, Wyse, RK, Gooch, V, Deanfield, JE. Left ventricular wall stress and contractile function in transposition of the great arteries after the Rastelli operation. J Thorac Cardiovasc Surg 1987; 93: 775784.CrossRefGoogle ScholarPubMed
57.Rajfer, SI, Borow, KM, Lang, RM, Neumann, A, Carroll, JD. Effects of dopamine on left ventricular afterload and contractile state in heart failure: Relation to the activation of betat adrenoceptors and dopamine receptors. J Am Coll Cardiol 1988; 12: 498506.CrossRefGoogle Scholar
58.Lang, RM, Borow, KM, Neumann, A, Carroll, JD, Weinert, L, Murphy, MB, Ghali, J, Rajfer, SI. Role of the beta2 adrenoceptor in mediating positive inotropic activity in the failing heart and its relation to the hemodynamic actions of dopexamine hydro-chloride. Am J Cardiol 1988; 62 (Suppl): 5: 46C-52C.CrossRefGoogle Scholar
59.Lang, RM, Borow, KM, Neumann, A, Feldman, T. Adverse cardiac effects of acute alcohol ingestion in young adults. Ann Intern Med 1985; 102: 742747.CrossRefGoogle ScholarPubMed
60.Lang, RM, Fellner, SK, Neumann, A, Bushinsky, DA, Borow, KM. Left ventricular contractility varies directly with the blood ionized calcium. Ann Intern Med 1988; 108: 524529.CrossRefGoogle ScholarPubMed
61.Feldman, T, Borow, KM, Same, DH, Neumann, A, Lang, RM. Myocardial mechanics in hyperthyroidism: importance of left ventricular loading conditions, heart rate and contractile state. J Am Coll Cardiol 1986; 7: 967974.CrossRefGoogle ScholarPubMed
62.Quinones, MA, Gaasch, WH, Alexander, JK. Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation 1976; 53: 293302.CrossRefGoogle ScholarPubMed
63.Mahler, F, Ross, J, O‘Rourke, RA, Covell, JW. Effects of changes in preload, afterload, and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 1975; 35: 626634.CrossRefGoogle ScholarPubMed
64.Nixon, JV, Murray, RG, Leonard, PD, Mitchell, JH, Blomqvist, CG. Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circulation 1982; 65: 698703.CrossRefGoogle ScholarPubMed
65.Quinones, MA, Gaasch, WH, Cole, JS, Alexander, JK. Echocardiographic determination of left ventricular stress-velocity relations in man. With reference to the effects of loading and contractility. Circulation 1975; 51: 689700.CrossRefGoogle Scholar
66.Schulman, DS, Remetz, MS, Elefteriades, J, Frances, CK. Mild mitral insufficiency is a marker of impaired left ventricular performance in aortic stenosis. J Am Coll Cardiol 1989; 13: 796801.CrossRefGoogle ScholarPubMed
67.Gunther, S, Grossman, W. Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation 1979; 59: 679688.CrossRefGoogle ScholarPubMed
68.Carabello, BA, Green, LH, Grossman, W, Cohn, LH, Koster, JK, Collins, JJ. Hemodynamic determinants of prognosis of aortic valve replacement in critical aortic stenosis and advanced congestive heart failure. Circulation 1980; 62: 4248.CrossRefGoogle ScholarPubMed
69.Parker, JO, Case, RB. Normal left ventricular function. Circulation 1979; 60: 412.CrossRefGoogle ScholarPubMed
70.Poliner, LR, Dehmer, GJ, Lewis, SE, Parkey, RW, Blomqvist, G, Willerson, JT. Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 1980; 62: 528534.Google Scholar
71.ross, J Jr. Mechanism of cardiac contraction. What roles for preload, afterload, and inotropic state in heart failure. Eur Heart J 1983; 4 (Suppl): A19–A28.CrossRefGoogle ScholarPubMed
72.Mirsky, I, Corin, WJ, Murakami, T, Grimm, J, Hess, OM, Krayenbuehl, HP. Correction for preload in assessment of myocardial contractility in aortic and mitral valve disease: Application of the concept of systolic myocardial stiffness. Circulation 1988; 78: 6880.CrossRefGoogle ScholarPubMed
73.McDonald, DA. Blood Flow in Arteries. 21nd edition. Edward Arnold Ltd., London, 1974 p. 309Google Scholar
74.Maroto, E, Fouron, JC, Douste-Blazy, MY, Carceller, AM, Van Doesburg, N, Kratz, C, Davignon, A. Influence of age on wall thickness, cavity dimensions and myocardial contractility of the left ventricle in simple transposition of the great arteries. Circulation 1983; 67: 13111317.CrossRefGoogle ScholarPubMed
75.Colan, SD, Sanders, SP, Parness, LA, Spevak, PJ. Evidence of enhanced contractility in normal infants compared to older children and adults. J Am Coll Cardiol 1989; 13: 135A. [Abstract]Google Scholar
76.Lipshultz, SE, Colan, SD, Gelber, RD, Perez-Atayde, AR, Sallan, SE, Sanders, SP. Late cardiac effects of Doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991; 324: 808815.CrossRefGoogle ScholarPubMed