Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-21T06:06:16.492Z Has data issue: false hasContentIssue false

Neurologic complications of infective endocarditis in children

Published online by Cambridge University Press:  12 May 2022

Marin Jacobwitz
Affiliation:
Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Emmanuelle Favilla
Affiliation:
Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Amisha Patel
Affiliation:
Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Therese M. Giglia
Affiliation:
Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Kimberly Taing
Affiliation:
Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Chitra Ravishankar
Affiliation:
Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
J. William Gaynor
Affiliation:
Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Daniel J. Licht
Affiliation:
Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Jennifer L. McGuire*
Affiliation:
Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Lauren A. Beslow*
Affiliation:
Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
*
Author for correspondence: Lauren A Beslow, MD MSCE or Jennifer McGuire, MD MSCE, Division of Neurology, Children’s Hospital of Philadelphia, Assistant Professors, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 34th St and Civic Center Blvd, Philadelphia, PA 19104, USA. Tel: +1 1 215 590 1719; Fax: +1 1 215 590 1771. E-mail: [email protected] or [email protected]
Author for correspondence: Lauren A Beslow, MD MSCE or Jennifer McGuire, MD MSCE, Division of Neurology, Children’s Hospital of Philadelphia, Assistant Professors, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 34th St and Civic Center Blvd, Philadelphia, PA 19104, USA. Tel: +1 1 215 590 1719; Fax: +1 1 215 590 1771. E-mail: [email protected] or [email protected]

Abstract

Objectives:

To define the frequency and characteristics of acute neurologic complications in children hospitalised with infective endocarditis and to identify risk factors for neurologic complications.

Study Design:

Retrospective cohort study of children aged 0–18 years hospitalised at a tertiary children’s hospital from 1 January, 2008 to 31 December, 2017 with infective endocarditis.

Results:

Sixty-eight children met Duke criteria for infective endocarditis (43 definite and 25 possible). Twenty-three (34%) had identified neurologic complications, including intracranial haemorrhage (25%, 17/68) and ischaemic stroke (25%, 17/68). Neurologic symptoms began a median of 4.5 days after infective endocarditis symptom onset (interquartile range 1, 25 days), though five children were asymptomatic and diagnosed on screening neuroimaging only. Overall, only 56% (38/68) underwent neuroimaging during acute hospitalisation, so additional asymptomatic neurologic complications may have been missed. Children with identified neurologic complications compared to those without were older (48 versus 22% ≥ 13 years old, p = 0.031), more often had definite rather than possible infective endocarditis (96 versus 47%, p < 0.001), mobile vegetations >10mm (30 versus 11%, p = 0.048), and vegetations with the potential for systemic embolisation (65 versus 29%, p = 0.004). Six children died (9%), all of whom had neurologic complications.

Conclusions:

Neurologic complications of infective endocarditis were common (34%) and associated with mortality. The true frequency of neurologic complications was likely higher because asymptomatic cases may have been missed without screening neuroimaging. Moving forward, we advocate that all children with infective endocarditis have neurologic consultation, examination, and screening neuroimaging. Additional prospective studies are needed to determine whether early identification of neurologic abnormalities may direct management and ultimately reduce neurologic morbidity and overall mortality.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*+

Contributed Equally.

References

Pasquali, SK, He, X, Mohamad, Z, McCrindle, BW, Newburger, JW, Li, JS, et al. Trends in endocarditis hospitalizations at US children’s hospitals: impact of the 2007 American Heart Association Antibiotic Prophylaxis Guidelines. Am Heart J 2012; 163: 894899. doi: 10.1016/j.ahj.2012.03.002.CrossRefGoogle ScholarPubMed
Toyoda, N, Chikwe, J, Itagaki, S, Gelijns, AC, Adams, DH, Egorova, NN. Trends in infective endocarditis in California and New York State, 1998–2013. JAMA 2017; 317: 16521660. doi: 10.1001/jama.2017.4287.CrossRefGoogle ScholarPubMed
Gupta, S, Sakhuja, A, McGrath, E, Asmar, B. Trends, microbiology, and outcomes of infective endocarditis in children during 2000–2010 in the United States. Congenit Heart Dis 2017; 12: 196201. doi: 10.1111/chd.12425.CrossRefGoogle ScholarPubMed
Rushani, D, Kaufman, JS, Ionescu-Ittu, R, Mackie, AS, Pilote, L, Therrien, J, et al. Infective endocarditis in children with congenital heart disease: cumulative incidence and predictors. Circulation 2013; 128: 14121419. doi: 10.1161/CIRCULATIONAHA.113.001827.CrossRefGoogle ScholarPubMed
Rosenthal, LB, Feja, KN, Levasseur, SM, Alba, LR, Gersony, W, Saiman, L. The changing epidemiology of pediatric endocarditis at a children’s hospital over seven decades. Pediatr Cardiol 2010; 31: 813820. doi: 10.1007/s00246-010-9709-6.CrossRefGoogle Scholar
Baddour, LM, Wilson, WR, Bayer, AS, Fowler, VG, Tleyjeh, IM, Rybak, MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association [published correction appears in Circulation. 2015 Oct 27;132(17):e215] [published correction appears in Circulation. 2016 Aug 23;134(8):e113] [published correction appears in Circulation. 2018 Jul 31;138(5):e78-e79]. Circulation 2015; 132: 14351486. doi: 10.1161/CIR.0000000000000296.CrossRefGoogle Scholar
Stockheim, JA, Chadwick, EG, Kessler, S, Amer, M, Abdel-Haq, N, Dajani, AS, et al. Are the Duke criteria superior to the Beth Israel criteria for the diagnosis of infective endocarditis in children? Clin Infect Dis 1998; 27: 14511456. doi: 10.1086/515021.CrossRefGoogle Scholar
Day, MD, Gauvreau, K, Shulman, S, Newburger, JW. Characteristics of children hospitalized with infective endocarditis [published correction appears in Circulation. 2010 Nov 23;122(21):e560]. Circulation 2009; 119: 865870. doi: 10.1161/CIRCULATIONAHA.108.798751.CrossRefGoogle Scholar
Ware, AL, Tani, LY, Weng, HY, Wilkes, J, Menon, SC. Resource utilization and outcomes of infective endocarditis in children. J Pediatr 2014; 165: 807812.e1. doi: 10.1016/j.jpeds.2014.06.026.CrossRefGoogle ScholarPubMed
Snygg-Martin, U, Gustafsson, L, Rosengren, L, Alsio, A, Ackerholm, P, Andersson, R, et al. Cerebrovascular complications in patients with left-sided infective endocarditis are common: a prospective study using magnetic resonance imaging and neurochemical brain damage markers. Clin Infect Dis 2008; 47: 2330. doi: 10.1086/588663.CrossRefGoogle Scholar
Heiro, M, Nikoskelainen, J, Engblom, E, Kotilainen, E, Marttila, R, Kotilainen, P. Neurologic manifestations of infective endocarditis: a 17-year experience in a teaching hospital in Finland. Arch Intern Med 2000; 160: 27812787. doi: 10.1001/archinte.160.18.2781.CrossRefGoogle Scholar
AlBassri, T, Sheikho, M, Chaikhouni, F, Al Habshan, F, Kabbani, MS. Neurological complications in children with infective endocarditis: incidence, risk factors, and outcome: a 10-year single-center experience. Int J Pediatr Adolesc Med 2021; 8: 198202. doi: 10.1016/j.ijpam.2021.02.003.CrossRefGoogle ScholarPubMed
Bayer, AS, Bolger, AF, Taubert, KA, Wilson, W, Steckelberg, J, Karchmer, AW, et al. Diagnosis and management of infective endocarditis and its complications. Circulation 1998; 98: 29362948. doi: 10.1161/01.cir.98.25.2936.CrossRefGoogle ScholarPubMed
Durack, DT, Lukes, AS, Bright, DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke endocarditis service. Am J Med 1994; 96: 200209. doi: 10.1016/0002-9343(94)90143-0.CrossRefGoogle ScholarPubMed
Baltimore, RS, Gewitz, M, Baddour, LM, Beerman, LB, Jackson, MA, Lockhart, PB, et al. Infective endocarditis in childhood: 2015 update: a scientific statement from the American Heart Association. Circulation 2015; 132: 14871515. doi: 10.1161/CIR.0000000000000298.CrossRefGoogle ScholarPubMed
Li, JS, Sexton, DJ, Mick, N, Nettles, R, Fowler, VG, Ryan, T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000; 30: 633638. doi: 10.1086/313753.CrossRefGoogle Scholar
Bendig, EA, Singh, J, Butler, TJ, Arrieta, AC. The impact of the central venous catheter on the diagnosis of infectious endocarditis using Duke criteria in children with Staphylococcus aureus bacteremia. Pediatr Infect Dis J 2008; 27: 636639. doi: 10.1097/INF.0b013e31816b78c8.CrossRefGoogle ScholarPubMed
Duval, X, Iung, B, Klein, I, Brochet, E, Thabut, G, Arnoult, F, et al. Effect of early cerebral magnetic resonance imaging on clinical decisions in infective endocarditis: a prospective study. Ann Intern Med 2010; 152: 497W175. doi: 10.7326/0003-4819-152-8-201004200-00006.CrossRefGoogle ScholarPubMed
Hess, A, Klein, I, Iung, B, Lavallee, P, Ilic-Habensus, E, Dornic, Q, et al. Brain MRI findings in neurologically asymptomatic patients with infective endocarditis. AJNR Am J Neuroradiol 2013; 34: 15791584. doi: 10.3174/ajnr.A3582.CrossRefGoogle ScholarPubMed
Supplementary material: File

Jacobwitz et al. supplementary material

Table S2
Download Jacobwitz et al. supplementary material(File)
File 52.4 KB
Supplementary material: File

Jacobwitz et al. supplementary material

Table S1

Download Jacobwitz et al. supplementary material(File)
File 30.7 KB