Hostname: page-component-6bf8c574d5-956mj Total loading time: 0 Render date: 2025-02-22T15:11:17.840Z Has data issue: false hasContentIssue false

Longitudinal assessment of left ventricular function and remodelling following surgical replacement of aortic valve in young patients with aortic valve dysfunction: a pilot study

Published online by Cambridge University Press:  12 February 2025

Snigdha Bhatia*
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Central Michigan University, Children’s Hospital of Michigan, Detroit, MI, USA
Gilda Kadiu
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Central Michigan University, Children’s Hospital of Michigan, Detroit, MI, USA
Gautam Singh
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Central Michigan University, Children’s Hospital of Michigan, Detroit, MI, USA
Sanjeev Aggarwal
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Central Michigan University, Children’s Hospital of Michigan, Detroit, MI, USA
*
Corresponding author: Snigdha Bhatia; Email: [email protected]

Abstract

Surgical prosthetic aortic valve replacement has been used for the management of aortic valve dysfunction. Studies in adults after aortic valve replacement report decreased left ventricular function in the early post-operative period. We hypothesised that young adults with aortic valve dysfunction who undergo aortic valve replacement may have incomplete recovery of left ventricular systolic function. This was a retrospective single-centre pilot study of patients with surgical aortic valve replacement at our institution over 20 years. Echocardiograms were analysed pre-operatively, at discharge, 1-year, and 5-year follow-up. Left ventricular systolic function was assessed using fractional shortening and ejection fraction. Speckle tracking measurements were performed for four-chamber longitudinal strain and peak systolic circumferential strain. Repeated-measure ANOVA (SPSS Inc.) was used for analysis. A p-value <0.05 was considered significant. Our cohort included 15 subjects (age 19.1 ± 9.0 years, 73% male). Left ventricular mass indexed to body surface area significantly improved (63.5 ± 25.3 pre-operatively to 41.2 ± 13.1 at 5 years, p = 0.009). Left ventricular longitudinal and circumferential strain measures deteriorated in the early post-operative period compared to pre-aortic valve replacement (−18.2 ± 3.4 versus −11.8 ± 3.3, p = 0.00) and (−25.1 ± 5.4 versus −18.9 ± 5.4, p = 0.06). Longitudinal strain continued to be abnormal at the 1- and 5-year follow-up compared to baseline. Children and young adults undergoing aortic valve replacement for aortic valve dysfunction had a decrease in left ventricular systolic function by strain imaging in the early post-operative period and abnormalities persisted on 5-year follow-up.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Masri, A, Svensson, LG, Griffin, BP, Desai, MY. Contemporary natural history of bicuspid aortic valve disease: a systematic review. Heart 2017; 103 ( 17 ): 13231330. DOI: 10.1136/heartjnl-2016-309916.CrossRefGoogle ScholarPubMed
Boe, BA, Zampi, JD, Kennedy, KF, et al. Acute success of balloon aortic valvuloplasty in the current era: a national cardiovascular data registry study. JACC Cardiovasc Interv 2017; 10 ( 17 ): 17171726. DOI: 10.1016/j.jcin.2017.08.001.CrossRefGoogle Scholar
Otto, CM, Nishimura, RA, Bonow, RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2020; 143 ( 10-5): e35e71. DOI: 10.1161/CIR.0000000000000932. Erratum in: Circulation. 2021;143(5): e228. Erratum in: Circulation. 2021 Mar 9; 143(10):e784.Google Scholar
Brennan, JM, Edwards, FH, Zhao, Y, et al. Long-term safety and effectiveness of mechanical versus biologic aortic valve prostheses in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. Circulation 2013; 127 ( 16 ): 16471655. DOI: 10.1161/CIRCULATIONAHA.113.002003.CrossRefGoogle Scholar
Schlein, J, Simon, P, Wollenek, G, Base, E, Laufer, G, Zimpfer, D. Aortic valve replacement in pediatric patients: 30 years single center experience. J Cardiothorac Surg 2021; 16 ( 1 ): 259. DOI: 10.1186/s13019-021-01636-2.CrossRefGoogle ScholarPubMed
Salaun, E, Mahjoub, H, Girerd, N, et al. Correlates, and outcomes of hemodynamic valve deterioration after bioprosthetic surgical aortic valve replacement. Circulation 2018; 138 ( 10): 971985. DOI: 10.1161/CIRCULATIONAHA.118.035150.CrossRefGoogle ScholarPubMed
Bilkhu, R, Jahangiri, M, Otto, CM. Patient-prosthesis mismatch following aortic valve replacement. Heart 2019; 105 ( Suppl 2 ): s28s33. DOI: 10.1136/heartjnl-2018-313515.CrossRefGoogle ScholarPubMed
Amzulescu, MS, De Craene, M, Langet, H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 2019; 20 ( 6 ): 605619. DOI: 10.1093/ehjci/jez041.CrossRefGoogle ScholarPubMed
Adamo, L, Perry, A, Novak, E, Makan, M, Lindman, BR, Mann, DL. Abnormal global longitudinal strain predicts future deterioration of left ventricular function in heart failure patients with a recovered left ventricular ejection fraction. Circ Heart Fail 2017; 10 ( 6 ): e003788. DOI: 10.1161/CIRCHEARTFAILURE.116.003788.CrossRefGoogle ScholarPubMed
Farsalinos, KE, Daraban, AM, Ünlü, S, Thomas, JD, Badano, LP, Voigt, JU. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr 2015; 28 ( 10 ): 11711181.e2. DOI: 10.1016/j.echo.2015.06.011.CrossRefGoogle ScholarPubMed
Kaler, GPS, Mahla, R, Mahla, H, et al. Speckle tracking echocardiographic assessment of left ventricular function by myocardial strain before and after aortic valve replacement. J Saudi Heart Assoc 2022; 33 ( 4 ): 353363. DOI: 10.37616/2212-5043.1288.CrossRefGoogle ScholarPubMed
Lund, O, Flø, C, Jensen, FT, et al. Left ventricular systolic and diastolic function in aortic stenosis. Prognostic value after valve replacement and underlying mechanisms. Eur Heart J 1997; 18 ( 12 ): 19771987. DOI: 10.1093/oxfordjournals.eurheartj.a015209.CrossRefGoogle ScholarPubMed
Al-Rashid, F, Totzeck, M, Saur, N et al. Global longitudinal strain is associated with better outcomes in transcatheter aortic valve replacement. BMC Cardiovasc Disord 2020; 20 ( 1 ): 267. DOI: 10.1186/s12872-020-01556-4.CrossRefGoogle ScholarPubMed
Iwahashi, N, Nakatani, S, Kanzaki, H, Hasegawa, T, Abe, H, Kitakaze, M. Acute improvement in myocardial function assessed by myocardial strain and strain rate after aortic valve replacement for aortic stenosis. J Am Soc Echocardiogr 2006; 19 ( 10 ): 12381244. DOI: 10.1016/j.echo.2006.04.041.CrossRefGoogle ScholarPubMed
Lopez, L, Colan, SD, Frommelt, PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiog 2010; 23 ( 5 ): 465495. DOI: 10.1016/j.echo.2010.03.019.CrossRefGoogle ScholarPubMed
Khoury, PR, Mitsnefes, M, Daniels, SR, Kimball, TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 2009; 22 ( 6 ): 709714. DOI: 10.1016/j.echo.2009.03.003.CrossRefGoogle ScholarPubMed
Lu, JC, Ensing, GJ, Yu, S, Thorsson, T, Donohue, JE, Dorfman, AL. 5/6 Area length method for left-ventricular ejection-fraction measurement in adults with repaired tetralogy of Fallot: comparison with cardiovascular magnetic resonance. Pediatr Cardiol 2013; 34 ( 2): 231239. DOI: 10.1007/s00246-012-0420-7.CrossRefGoogle ScholarPubMed
Akam-Venkata, J, Kadiu, G, Galas, J, Lipshultz, SE, Aggarwal, S. Left ventricle segmental function in childhood cancer survivors using speckle-tracking echocardiography. Cardiol Young 2019; 29 ( 12): 14941500. DOI: 10.1017/S1047951119002622.CrossRefGoogle ScholarPubMed
Colquitt, JL, Pignatelli, RH. Strain imaging: the emergence of speckle tracking echocardiography into clinical pediatric cardiology. Congenit Heart Dis 2016; 11 ( 2): 199207. DOI: 10.1111/chd.12334.CrossRefGoogle ScholarPubMed
Rost, C, Korder, S, Wasmeier, G, et al. Sequential changes in myocardial function after valve replacement for aortic stenosis by speckle tracking echocardiography. Eur J Echocardiogr 2010; 11 ( 7): 584589. DOI: 10.1093/ejechocard/jeq017.CrossRefGoogle ScholarPubMed
Krayenbuehl, HP, Hess, OM, Monrad, ES, Schneider, J, Mall, G, Turina, M. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 1989; 79 ( 4): 744755. DOI: 10.1161/01.cir.79.4.744.CrossRefGoogle ScholarPubMed
Krymsky, LD. Pathologic anatomy of congenital heart disease. Circulation 1965; 32 ( 5): 814827.CrossRefGoogle ScholarPubMed
Sanchez-Quintana, D, Climent, V, Ho, SY, Anderson, RH. Myoarchitecture and connective tissue in hearts with tricuspid atresia. Heart 1999; 81 ( 2): 182191. DOI: 10.1136/hrt.81.2.182.CrossRefGoogle ScholarPubMed
Salih, C, McCarthy, KP, Ho, SY. The fibrous matrix of ventricular myocardium in hypoplastic left heart syndrome: a quantitative and qualitative analysis. Ann Thorac Surg 2004; 77 ( 1): 3640.CrossRefGoogle ScholarPubMed
Tafreshi, RI, Shahmohammadi, A, Davari, PN. Predictors of left ventricular performance after valve replacement in children and adolescents with chronic aortic regurgitation. Pediatr Cardiol 2005; 26 ( 4): 331337. DOI: 10.1007/s00246-005-8645-3.CrossRefGoogle ScholarPubMed
Buddhe, S, Du, W, Walters, HL, Delius, R, Pettersen, MD. Predictors of left ventricular remodeling after aortic valve replacement in pediatric patients with isolated aortic regurgitation. Congenit Heart Dis 2013; 8 ( 2): 167173. DOI: 10.1111/j.1747-0803.2012.00703.x.CrossRefGoogle ScholarPubMed
Dahl, JS, Eleid, MF, Michelena, HI, et al. Effect of left ventricular ejection fraction on postoperative outcome in patients with severe aortic stenosis undergoing aortic valve replacement. Circulation: Cardiovasc Imag 2015; 8 ( 4): e002917. DOI: 10.1161/CIRCIMAGING.114.002917.Google ScholarPubMed
Petersen, J, Neumann, N, Naito, S, et al. Persistence of reduced left ventricular function after aortic valve surgery for aortic valve regurgitation: bicuspid versus tricuspid. Thorac Cardiovasc Surg 2021; 69 ( 5): 389395. DOI: 10.1055/s-0039-1692664.Google ScholarPubMed
Stokke, TM, Hasselberg, NE, Smedsrud, MK, et al. Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J Am Coll Cardiol 2017; 70 ( 8): 942954. DOI: 10.1016/j.jacc.2017.06.046.CrossRefGoogle ScholarPubMed
Barfuss, SB, Boucek, DM, McFarland, CA, et al. Short-term left ventricular reverse remodeling after transcatheter aortic valve replacement in children. J Am Soc Echocardiogr 2022; 35 ( 10): 10771083. DOI: 10.1016/j.echo.2022.05.009.CrossRefGoogle ScholarPubMed
Vollema, EM, Singh, GK, Prihadi, EA, et al. Time course of left ventricular remodelling and mechanics after aortic valve surgery: aortic stenosis vs. aortic regurgitation. Eur Heart J Cardiovasc Imaging 2019; 20 ( 10): 11051111. DOI: 10.1093/ehjci/jez049.CrossRefGoogle ScholarPubMed