Hostname: page-component-f554764f5-44mx8 Total loading time: 0 Render date: 2025-04-14T23:18:17.959Z Has data issue: false hasContentIssue false

Investigating the possible connection between cystic hygroma, nuchal translucency, and the genetic link underlying cardiac lymphatic abnormalities and congenital heart disease: is there an association?

Published online by Cambridge University Press:  07 April 2025

Marios Loukas*
Affiliation:
Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies Department of Clinical Anatomy, Mayo Clinic, Rochester, MN, USA Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland Department of Pathology, St George’s University, School of Medicine, Grenada, West Indies
Ishank Gupta
Affiliation:
Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies
Brenna Wilson
Affiliation:
Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies
Shamfa Joseph
Affiliation:
Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies
Rachel Levene
Affiliation:
Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies
Michael Montalbano
Affiliation:
Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies
*
Corresponding author: Marios Loukas; Email: [email protected]

Abstract

Although a direct link between cardiac lymphatics and congenital heart disease (CHD) has not been established, research indicates that abnormalities in the cardiac lymphatic system are involved in several congenital disorders that present with cardiac defects. However, this contribution remains poorly understood and is still an emerging area of study. One theory proposes that abnormal lymphatic development, which can present as cystic hygroma or increased nuchal translucency, may give rise to heart defects such as coarctation of the aorta, hypoplastic left heart syndrome, or bicuspid aortic valves. The genetic pathways for the development of the cardiac lymphatic system and the heart’s major vessels may overlap; therefore, mutations in these genes could result in simultaneous defects in both systems. The close anatomical proximity between cardiac lymphatics and the great vessels of the heart suggests a “cause and effect” relationship, where an abnormality in one could affect the other and lead to congenital defects. Given that congenital heart disease is the most common birth defect in the United States, this systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, seeks to explore the potential link between cardiac lymphatics and CHD. Understanding this connection could have significant clinical implications by paving the way for new diagnostic approaches and therapeutic strategies for CHDs.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Jones, D, Min, W. An overview of lymphatic vessels and their emerging role in cardiovascular disease. J Cardiovasc Dis Res 2011; 2 ( 3 ): 141152. doi: 10.4103/0975-3583.85260.Google ScholarPubMed
Schad, H. Present knowledge of Experimental Cardiac lymphatic obstruction. The Coronary sinus, 1984, pp 239246.Google Scholar
Miller, AJ. The grossly invisible and generally ignored lymphatics of the mammalian heart. Med Hypotheses 2011; 76 ( 4 ): 604606. doi: 10.1016/j.mehy.2011.01.012.Google ScholarPubMed
Cui, Y, Urschel, JD, Petrelli, NJ. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac Cardiovasc Surg 2001; 49 ( 1 ): 3540. doi: 10.1055/s-2001-9917.Google ScholarPubMed
Bansal, M. The Link Between Lymphatic Obstruction and Congenital Heart Disease. In The Cardiac Lymphatic System. Springer, New York, 2013, 3544. doi: 10.1007/978-1-4614-6774-8_3.Google Scholar
Ishikawa, Y, Akishima-Fukasawa, Y, Ito, K, et al. Lymphangiogenesis in myocardial remodelling after infarction. Histopathology 2007; 51 ( 3 ): 345353. doi: 10.1111/j.1365-2559.2007.02785.x.CrossRefGoogle ScholarPubMed
KLINE, IK, MILLER, AJ, PICK, R, KATZ, LN. The relationship between human endocardial fibroelastosis and obstruction of the cardiac lymphatics. Circulation 1964; 30: 728735. doi: 10.1161/01.cir.30.5.728.CrossRefGoogle ScholarPubMed
Richards, AA, Garg, V. Genetics of congenital heart disease. Curr Cardiol Rev 2010; 6 ( 2 ): 9197. doi: 10.2174/157340310791162703.CrossRefGoogle ScholarPubMed
Loscalzo, ML, Van, PL, Ho, VB, et al. Association between fetal lymphedema and congenital cardiovascular defects in turner syndrome. Pediatrics 2005; 115 ( 3 ): 732735. doi: 10.1542/peds.2004-1369.CrossRefGoogle ScholarPubMed
Clark, EB. Neck web and congenital heart defects: a pathogenic association in 45 X-O turner syndrome? Teratology 1984; 29 ( 3 ): 355361. doi: 10.1002/tera.1420290305.Google ScholarPubMed
CDC. Congenital Heart defects (CHDs). 2024. https://www.cdc.gov/heart-defects/data/index.html.Google Scholar
Irrthum, A, Devriendt, K, Chitayat, D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 2003; 72 ( 6 ): 14701478. doi: 10.1086/375614.Google ScholarPubMed
Fang, J, Dagenais, SL, Erickson, RP, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 2000; 67 ( 6 ): 13821388. doi: 10.1086/316915.CrossRefGoogle ScholarPubMed
Chervenak, FA, Isaacson, G, Blakemore, KJ, et al. Fetal cystic hygroma. Cause and natural history. N Engl J Med 1983; 309 ( 14 ): 822825. doi: 10.1056/NEJM198310063091403.CrossRefGoogle ScholarPubMed
Berdahl, LD, Wenstrom, KD, Hanson, JW. Web neck anomaly and its association with congenital heart disease. Am J Med Genet 1995; 56 ( 3 ): 304307. doi: 10.1002/ajmg.1320560318.Google ScholarPubMed
Lacro, RV, Jones, KL, Benirschke, K. Coarctation of the aorta in turner syndrome: a pathologic study of fetuses with nuchal cystic hygromas, hydrops fetalis, and female genitalia. Pediatrics 1988; 81 ( 3 ): 445451.Google Scholar
Miyabara, S, Nakayama, M, Suzumori, K, Yonemitsu, N, Sugihara, H. Developmental analysis of cardiovascular system of 45, X fetuses with cystic hygroma. Am J Med Genet 1997; 68 ( 2 ): 135141. doi: 10.1002/(sici)1096-8628(19970120)68:23.0.co;2-o.Google ScholarPubMed
Miyabara, S, Sugihara, H, Maehara, N, et al. Significance of cardiovascular malformations in cystic hygroma: a new interpretation of the pathogenesis. Am J Med Genet 1989; 34 ( 4 ): 489501. doi: 10.1002/ajmg.1320340408.CrossRefGoogle ScholarPubMed
Byrne, J, Blanc, WA, Warburton, D, Wigger, J. The significance of cystic hygroma in fetuses. Hum Pathol 1984; 15 ( 1 ): 6167. doi: 10.1016/S0046-8177(84)80331-7.CrossRefGoogle ScholarPubMed
Hyett, J, Moscoso, G, Papapanagiotou, G, Perdu, M, Nicolaides, KH. Abnormalities of the heart and great arteries in chromosomally normal fetuses with increased nuchal translucency thickness at 11–13 weeks of gestation. Ultrasound Obstet Gynecol 1996; 7 ( 4 ): 245250. doi: 10.1046/j.1469-0705.1996.07040245.x.CrossRefGoogle ScholarPubMed
Bekker, MN, Haak, MC, Rekoert-Hollander, M, Twisk, J, Van Vugt, JMG. Increased nuchal translucency and distended jugular lymphatic sacs on first-trimester ultrasound. Ultrasound Obstet Gynecol 2005; 25 ( 3 ): 239245. doi: 10.1002/uog.1831.CrossRefGoogle ScholarPubMed
Mavrides, E, Cobian-Sanchez, F, Tekay, A, et al. Limitations of using first-trimester nuchal translucency measurement in routine screening for major congenital heart defects. Ultrasound Obstet Gynecol 2001; 17 ( 2 ): 106110. doi: 10.1046/j.1469-0705.2001.00342.x.CrossRefGoogle ScholarPubMed
Ghi, T, Huggon, IC, Zosmer, N, Nicolaides, KH. Incidence of major structural cardiac defects associated with increased nuchal translucency but normal karyotype. Ultrasound Obstet Gynecol 2001; 18 ( 6 ): 610614. doi: 10.1046/j.0960-7692.2001.00584.x.CrossRefGoogle ScholarPubMed
Hyett, JA, Perdu, M, Sharland, GK, Snijders, RS, Nicolaides, KH. Increased nuchal translucency at 10-14 weeks of gestation as a marker for major cardiac defects. Ultrasound Obstet Gynecol 1997; 10 ( 4 ): 242246. doi: 10.1046/j.1469-0705.1997.10040242.x.CrossRefGoogle ScholarPubMed
Atzei, A, Gajewska, K, Huggon, IC, Allan, L, Nicolaides, KH. Relationship between nuchal translucency thickness and prevalence of major cardiac defects in fetuses with normal karyotype. Ultrasound Obst Gyn 2005; 26 ( 2 ): 154157. doi: 10.1002/uog.1936.CrossRefGoogle ScholarPubMed
Lopes, LM, Brizot, ML, Lopes, MAB, Ayello, VD, Schultz, R, Zugaib, M. Structural and functional cardiac abnormalities identified prior to 16 weeks’ gestation in fetuses with increased nuchal translucency. Ultrasound Obst Gyn 2003; 22 ( 5 ): 470478. doi: 10.1002/uog.905.CrossRefGoogle ScholarPubMed
McAuliffe, FM, Hornberger, LK, Winsor, S, Chitayat, D, Chong, K, Johnson, JA. Fetal cardiac defects and increased nuchal translucency thickness: a prospective study. Am J Obstet Gynecol 2004; 191 ( 4 ): 14861490. doi: 10.1016/j.ajog.2004.05.049.CrossRefGoogle ScholarPubMed
Clur, SA, Mathijssen, IB, Pajkrt, E, et al. Structural heart defects associated with an increased nuchal translucency: 9 years experience in a referral centre. Prenat Diagn 2008; 28 ( 4 ): 347354. doi: 10.1002/pd.1985.CrossRefGoogle Scholar
Hyett, JA, Moscoso, G, Nicolaides, KH. First-trimester nuchal translucency and cardiac septal defects in fetuses with trisomy 21. Am J Obstet Gynecol 1995; 172 ( 5 ): 14111413. doi: 10.1016/0002-9378(95)90470-0.CrossRefGoogle ScholarPubMed
Burger, NB, Bekker, MN, de Groot, CJM, Christoffels, VM, Haak, MC. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms. Prenat Diagn 2015; 35 ( 6 ): 517528. doi: 10.1002/pd.4586.CrossRefGoogle ScholarPubMed
Brice, G, Mansour, S, Bell, R, et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet 2002; 39 ( 7 ): 478483. doi: 10.1136/jmg.39.7.478.CrossRefGoogle ScholarPubMed
Kume, T, Jiang, H, Topczewska, JM, Hogan, BL. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 2001; 15 ( 18 ): 24702482. doi: 10.1101/gad.907301.CrossRefGoogle ScholarPubMed
Sakamoto, Y, Hara, K, Kanai-Azuma, M, et al. Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochem Biophys Res Commun 2007; 360 ( 3 ): 539544. doi: 10.1016/j.bbrc.2007.06.093.CrossRefGoogle ScholarPubMed
Shakoor, A, Wu, JK, Muley, A, et al. Lymphatic endothelial cell defects in congenital cardiac patients with postoperative chylothorax. Journal of vascular anomalies 2021; 2 ( 3 ): e016. doi: 10.1097/jova.0000000000000016.CrossRefGoogle ScholarPubMed
Joyce, S, Gordon, K, Brice, G, et al. The lymphatic phenotype in noonan and cardiofaciocutaneous syndrome. Eur J Hum Genet 2016; 24 ( 5 ): 690696. doi: 10.1038/ejhg.2015.175.CrossRefGoogle ScholarPubMed
Kouz, K, Lissewski, C, Spranger, S, et al. Genotype and phenotype in patients with noonan syndrome and a RIT1 mutation. Genet Med 2016; 18 ( 12 ): 12261234. doi: 10.1038/gim.2016.32.CrossRefGoogle Scholar
Sarkozy, A, Conti, E, Seripa, D, et al. Correlation between PTPN11 gene mutations and congenital heart defects in noonan and LEOPARD syndromes. J Med Genet 2003; 40 ( 9 ): 704708. doi: 10.1136/jmg.40.9.704.CrossRefGoogle ScholarPubMed
Mishima, K, Watabe, T, Saito, A, et al. Prox1 induces lymphatic endothelial differentiation via integrin α9 and other signaling cascades. Mol Biol Cell 2007; 18 ( 4 ): 14211429. doi: 10.1091/mbc.e06-09-0780.CrossRefGoogle ScholarPubMed
Breiteneder-Geleff, S, Soleiman, A, Kowalski, H, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries. Am J Pathol 1999; 154 ( 2 ): 385394. doi: 10.1016/S0002-9440(10)65285-6.CrossRefGoogle ScholarPubMed
Schacht, V, Ramirez, MI, Hong, YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22 ( 14 ): 35463556. doi: 10.1093/emboj/cdg342.CrossRefGoogle ScholarPubMed
Wigle, JT, Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98 ( 6 ): 769778. doi: 10.1016/S0092-8674(00)81511-1.CrossRefGoogle ScholarPubMed
François, M, Caprini, A, Hosking, B, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 2008; 456 ( 7222 ): 643647. doi: 10.1038/nature07391.CrossRefGoogle ScholarPubMed
Petrova, TV, Karpanen, T, Norrmén, C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10 ( 9 ): 974981. doi: 10.1038/nm1094.CrossRefGoogle ScholarPubMed
Johnson, NC, Dillard, ME, Baluk, P, et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 2008; 22 ( 23 ): 32823291. doi: 10.1101/gad.1727208.CrossRefGoogle ScholarPubMed
Smpokou, P, Tworog-Dube, E, Kucherlapati, RS, Roberts, AE. Medical complications, clinical findings, and educational outcomes in adults with noonan syndrome. Am J Med Genet A 2012; 158A ( 12 ): 31063111. doi: 10.1002/ajmg.a.35639.CrossRefGoogle ScholarPubMed
Mellor, RH, Tate, N, Stanton, AWB, et al. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency. J Vasc Res 2011; 48 ( 5 ): 397407. doi: 10.1159/000323484.CrossRefGoogle ScholarPubMed
Nicolaides, KH. Nuchal translucency and other first-trimester sonographic markers of chromosomal abnormalities. Am J Obstet Gynecol 2004; 191 ( 1 ): 4567. doi: 10.1016/j.ajog.2004.03.090.CrossRefGoogle ScholarPubMed
Putte, SCJ. Lymphatic malformation in human fetuses. Virchows Arch A Pathol Anat Histol 1977; 376 ( 3 ): 233246. doi: 10.1007/BF00432399.CrossRefGoogle ScholarPubMed
Stevenson, RE, Hall, JG. Lymphatic system. Human Malformations and Related Anomalies. Oxford University Press Inc, New York, NY, 2005, pp 164167.CrossRefGoogle Scholar
Castelli, E, Todros, T, Mattutino, G, Torre, C, Panattoni, G. Light and scanning electron microscope study of nuchal translucency in a normal fetus. Ultrasound Obst Gyn 2003; 21 ( 5 ): 514516. doi: 10.1002/uog.95.CrossRefGoogle Scholar
Carvalho, JS. The fetal heart or the lymphatic system or .? The quest for the etiology of increased nuchal translucency. Ultrasound Obstet Gynecol 2005; 25 ( 3 ): 215220. doi: 10.1002/uog.1865.CrossRefGoogle ScholarPubMed
Lampejo, AO, Ghavimi, SAA, Hägerling, R, Agarwal, S, Murfee, WL. Lymphatic/blood vessel plasticity: motivation for a future research area based on present and past observations. Am J Physiol Heart Circ Physiol 2023; 324 ( 1 ): H109H121. doi: 10.1152/ajpheart.00612.2022.CrossRefGoogle ScholarPubMed
Hong, YK, Shin, JW, Detmar, M. Development of the lymphatic vascular system: a mystery unravels. Dev Dyn 2004; 231 ( 3 ): 462473. doi: 10.1002/dvdy.20179.CrossRefGoogle ScholarPubMed
Jiang, X, Tian, W, Nicolls, MR, Rockson, SG. Lymphatic biology and medicine. In: The Vasculome. Elsevier, 2022, pp 127137. doi: 10.1016/B978-0-12-822546-2.00009-5.CrossRefGoogle Scholar
Csányi, G, Singla, B. Arterial lymphatics in atherosclerosis: old questions, new insights, and remaining challenges. J Clin Med 2019; 8 ( 4 ): 495. doi: 10.3390/jcm8040495.CrossRefGoogle ScholarPubMed
Wegner, M. From head to toes: the multiple facets of sox proteins. Nucleic Acids Res 1999; 27 ( 6 ): 14091420. doi: 10.1093/nar/27.6.1409.CrossRefGoogle ScholarPubMed
Francois, M, Koopman, P, Beltrame, M. SoxF genes: key players in the development of the cardio-vascular system. Int J Biochem Cell Biol 2010; 42 ( 3 ): 445448. doi: 10.1016/j.biocel.2009.08.017.CrossRefGoogle ScholarPubMed
Brouillard, P, Boon, L, Vikkula, M. Genetics of lymphatic anomalies. J Clin Invest 2014; 124 ( 3 ): 898904. doi: 10.1172/JCI71614.CrossRefGoogle ScholarPubMed
Vuorio, T, Tirronen, A, Ylä-Herttuala, S. Cardiac Lymphatics - A New Avenue for Therapeutics? Trends Endocrinol Metab 2017; 28 ( 4 ): 285296. doi: 10.1016/j.tem.2016.12.002.CrossRefGoogle ScholarPubMed