Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T07:46:07.560Z Has data issue: false hasContentIssue false

Genetic study of pediatric hypertrophic cardiomyopathy in Egypt

Published online by Cambridge University Press:  05 October 2020

Rania K. Darwish
Affiliation:
Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt Next-Generation sequencing Laboratory, Cairo University Children Hospital, Cairo, Egypt
Alireza Haghighi
Affiliation:
Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA, USA
Zeinab S. Seliem
Affiliation:
Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
Sonia A. El-Saiedi
Affiliation:
Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
Nora H. Radwan
Affiliation:
Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
Dina F. El-Gayar
Affiliation:
Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
Nesrine S. Elfeel
Affiliation:
Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
Mohamed Abouelhoda
Affiliation:
Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
Dina A. Mehaney*
Affiliation:
Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt Next-Generation sequencing Laboratory, Cairo University Children Hospital, Cairo, Egypt
*
Author for correspondence: Dina Ahmed Mehaney, MD, Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Kasr Alainy St., Cairo 11562, Egypt. Tel: +20 1023123423; Fax: +20 23644383. E-mail: [email protected]

Abstract

Paediatric cardiomyopathy is a progressive and often lethal disorder and the most common cause of heart failure in children. Despite their severe outcomes, their genetic etiology is still poorly characterised. The current study aimed at uncovering the genetic background of idiopathic primary hypertrophic cardiomyopathy in a cohort of Egyptian children using targeted next-generation sequencing. The study included 24 patients (15 males and 9 females) presented to the cardiomyopathy clinic of Cairo University Children’s Hospital with a median age of 2.75 (0.5–14) years. Consanguinity was positive in 62.5% of patients. A family history of hypertrophic cardiomyopathy was present in 20.8% of patients. Ten rare variants were detected in eight patients; two pathogenic variants (8.3%) in MBPC3 and MYH7, and eight variants of uncertain significance in MYBPC3, TTN, VCL, MYL2, CSRP3, and RBM20.

Here, we report on the first national study in Egypt that analysed sarcomeric and non-sarcomeric variants in a cohort of idiopathic paediatric hypertrophic cardiomyopathy patients using next-generation sequencing. The current pilot study suggests that paediatric hypertrophic cardiomyopathy in Egypt might have a particular genetic background, especially with the high burden of consanguinity. Including the genetic testing in the routine diagnostic service is important for a better understanding of the pathophysiology of the disease, proper patient management, and at-risk detection. Genome-wide tests (whole exome/genome sequencing) might be better than the targeted sequencing approach to test primary hypertrophic cardiomyopathy patients in addition to its ability for the identification of novel genetic causes.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Sabater-Molina, M, Pérez-Sánchez, I, Hernández del Rincón, JP, Gimeno, JR. Genetics of hypertrophic cardiomyopathy: a review of current state. Clin Genet 2018; 93: 314. doi: 10.1111/cge.13027 CrossRefGoogle ScholarPubMed
Garfinkel, AC, Seidman, JG, Seidman, CE. Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Fail Clin 2018; 14: 139146. doi: 10.1016/j.hfc.2017.12.004 CrossRefGoogle ScholarPubMed
Ho, CY, Day, SM, Ashley, EA, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation 2018; 138: 13871398. doi: 10.1161/CIRCULATIONAHA.117.033200 CrossRefGoogle Scholar
Maron, BJ, Gardin, JM, Flack, JM, Gidding, SS, Kurosaki, TT, Bild, DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 1995; 92: 785789. doi: 10.1161/01.CIR.92.4.785 CrossRefGoogle Scholar
Maron, BJ, Mathenge, R, Casey, SA, Poliac, LC, Longe, TF. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol 1999; 33: 15901595. doi: 10.1016/S0735-1097(99)00039-X CrossRefGoogle ScholarPubMed
Hada, Y, Sakamoto, T, Amano, K, et al. Prevalence of hypertrophic cardiomyopathy in a population of adult Japanese workers as detected by echocardiographic screening. Am J Cardiol 1987; 59: 183184. doi: 10.1016/S0002-9149(87)80107-8 CrossRefGoogle Scholar
Zou, Y, Song, L, Wang, Z, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med 2004; 116: 1418. doi: 10.1016/j.amjmed.2003.05.009 CrossRefGoogle ScholarPubMed
El-Saiedi, SA, El Ruby, MO, El Darsh, AA. Familial hypertrophic cardiomyopathy: new insight on mode of inheritance among Egyptian children. J Clin Exp Cardiol 2014; 5: 7. doi: 10.4172/2155-9880.1000326 Google Scholar
Arola, A, Jokinen, E, Ruuskanen, O, et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents: a nationwide study in Finland. Am J Epidemiol 1997; 146: 385393. doi: 10.1093/oxfordjournals.aje.a009291 CrossRefGoogle ScholarPubMed
Lipshultz, SE, Sleeper, LA, Towbin, JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. New Engl J Med 2003; 348: 16471655. doi: 10.1056/NEJMoa021715 CrossRefGoogle ScholarPubMed
Nugent, AW, Daubeney, PEF, Chondros, P, et al. The epidemiology of childhood cardiomyopathy in Australia. New Engl J Med 2003; 348: 16391646. doi: 10.1056/NEJMoa021737 CrossRefGoogle ScholarPubMed
Sliwa, K, Damasceno, A, Mayosi, BM. Epidemiology and etiology of cardiomyopathy in Africa. Circulation 2005; 112: 35773583. doi: 10.1161/CIRCULATIONAHA.105.542894 CrossRefGoogle ScholarPubMed
Elmasry, OA, Kamel, OA, El-Feki, NF. Pediatric cardiomyopathies over the last decade: a retrospective observational epidemiology study in a tertiary institute, Egypt. J Egypt Public Health Assoc 2011; 86: 6367. doi: 10.1097/01.EPX.0000399140.68151.6a CrossRefGoogle Scholar
Shawky, RM, Elsayed, NS, Ibrahim, DS, Seifeldin, NS. Profile of genetic disorders prevalent in northeast region of Cairo, Egypt. Egypt J Med Hum Genet 2012; 13: 4562. doi: 10.1016/j.ejmhg.2011.10.002 CrossRefGoogle Scholar
Al-Gazali, L, Hamamy, H, Al-Arrayad, S. Genetic disorders in the Arab world. Br Med J 2006; 333: 831834. doi: 10.1136/bmj.38982.704931.AE CrossRefGoogle ScholarPubMed
Temtamy, S, Aglan, M. Consanguinity and genetic disorders in Egypt. Middle East J Med Genet 2012; 1: 1217. doi: 10.1097/01.mxe.0000407744.14663.d8 CrossRefGoogle Scholar
Saadallah, AA, Rashed, MS. Newborn screening: experiences in the Middle East and North Africa. J Inherit Metab Dis 2007; 30: 482489. doi: 10.1007/s10545-007-0660-5 CrossRefGoogle ScholarPubMed
Tadmouri, GO, Nair, P, Obeid, T, Al Ali, MT, Al Khaja, N, Hamamy, HA. Consanguinity and reproductive health among Arabs. Reprod Health 2009; 6: 10.1186/1742-4755-6-17 CrossRefGoogle ScholarPubMed
Abd Elaal Bakeet, M, Mohamed Mohamed, M, Ahmed Allam, A, Gamal, R. Childhood cardiomyopathies: a study in tertiary care hospital in upper Egypt. Electron Physician 2016; 8: 31643169. doi: 10.19082/3164 CrossRefGoogle Scholar
Rupp, S, Felimban, M, Schänzer, A, et al. Genetic basis of hypertrophic cardiomyopathy in children. Clin Res Cardiol 2019; 108: 282289. doi: 10.1007/s00392-018-1354-8 CrossRefGoogle ScholarPubMed
Manolio, TA, Collins, FS, Cox, NJ, et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747753. doi: 10.1038/nature08494 CrossRefGoogle ScholarPubMed
Lipshultz, SE, Law, YM, Asante-Korang, A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation 2019; 140: E9E68. doi: 10.1161/CIR.0000000000000682 CrossRefGoogle ScholarPubMed
Morita, H, Rehm, HL, Menesses, A, et al. Shared Genetic Causes of Cardiac Hypertrophy in Children and Adults Abstract. N Engl J Med 2008; 358. doi: 10.1056/NEJMoa075463 CrossRefGoogle Scholar
Kaski, JP, Syrris, P, Esteban, MTT, et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 2009; 2: 436441. doi: 10.1161/CIRCGENETICS.108.821314 CrossRefGoogle ScholarPubMed
Kindel, SJ, Miller, EM, Gupta, R, et al. Pediatric cardiomyopathy: importance of genetic and metabolic evaluation. J Card Fail 2012; 18: 396403. doi: 10.1016/j.cardfail.2012.01.017 CrossRefGoogle ScholarPubMed
Hayashi, T, Tanimoto, K, Hirayama-Yamada, K, et al. Genetic background of Japanese patients with pediatric hypertrophic and restrictive cardiomyopathy. J Hum Genet 2018; 63: 989996. doi: 10.1038/s10038-018-0479-y CrossRefGoogle ScholarPubMed
Shaboodien, G, Spracklen, T, Kamuli, S, Ndibangwi, P, Van Niekerk, C, Ntusi, N. Genetics of inherited cardiomyopathies in Africa. Cardiovasc Diagn Ther 2019. doi: 10.21037/cdt.2019.10.03 Google Scholar
Lahrouchi, N, Raju, H, Lodder, EM, et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur J Hum Genet 2020; 28: 1722. doi: 10.1038/s41431-019-0500-8 CrossRefGoogle ScholarPubMed
Ntusi, NA, Shaboodien, G, Badri, M, Gumedze, F, Mayosi, BM. Clinical features, spectrum of causal genetic mutations and outcome of hypertrophic cardiomyopathy in south Africans. Cardiovasc J Afr 2016; 27: 152158. doi: 10.5830/CVJA-2015-075 CrossRefGoogle ScholarPubMed
Jaafar, N, Girolami, F, Zairi, I, Kraiem, S, Hammami, M, Olivotto, I. Genetic profile of hypertrophic cardiomyopathy in Tunisia: is it different? Glob Cardiol Sci Pract 2015; 2015: 16. doi: 10.5339/gcsp.2015.16 CrossRefGoogle ScholarPubMed
Selim, Z, El Saiedi, S, Ammar, R, Esmail, R, El Satar, IA. Twelve years experience with pediatric cardiomyopathy identifying outcome risk factors. Cardiol Young 2017; 27: S1S653. doi: 10.1017/s104795111700110x Google Scholar
El-Saiedi, SA, Seliem, ZS, Esmail, RI. Hypertrophic cardiomyopathy: prognostic factors and survival analysis in 128 Egyptian patients. Cardiol Young 2014; 24: 702708. doi: 10.1017/S1047951113001030 CrossRefGoogle ScholarPubMed
Bottillo, I, D’Angelantonio, D, Caputo, V, et al. Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy. Gene 2016; 577: 227235. doi: 10.1016/j.gene.2015.11.048 CrossRefGoogle ScholarPubMed
Elliott, P, McKenna, WJ. Hypertrophic cardiomyopathy. In: Lancet. Vol 363. Elsevier, Amsterdam, 2004: 18811891. doi: 10.1016/S0140-6736(04)16358-7 Google Scholar
Simpson, JM, Chubb, H. Do we finally have the a to z of z scores? Circ Cardiovasc Imaging 2017; 10. doi: 10.1161/CIRCIMAGING.117.007191 CrossRefGoogle Scholar
Maron, MS, Olivotto, I, Betocchi, S, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. New Engl J Med 2003; 348: 295303. doi: 10.1056/NEJMoa021332 CrossRefGoogle ScholarPubMed
Yancy, CW, Jessup, M, Bozkurt, B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 2013; 128: 18101852. doi: 10.1161/CIR.0b013e31829e8807 CrossRefGoogle Scholar
Pua, CJ, Bhalshankar, J, Miao, K, et al. Development of a comprehensive sequencing assay for inherited cardiac condition genes. J Cardiovasc Transl Res 2016; 9: 311. doi: 10.1007/s12265-016-9673-5 CrossRefGoogle ScholarPubMed
Li, H, Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010; 26: 589595. doi: 10.1093/bioinformatics/btp698 CrossRefGoogle ScholarPubMed
Van der Auwera, GA, Carneiro, MO, Hartl, C, et al. From fastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 2013; 43: 11.10.111.10.33. doi: 10.1002/0471250953.bi1110s43 Google ScholarPubMed
Thorvaldsdóttir, H, Robinson, JT, Mesirov, JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinformatics 2013; 14: 178192. doi: 10.1093/bib/bbs017 CrossRefGoogle ScholarPubMed
Wang, K, Li, M, Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl Acids Res 2010; 38: e164. doi: 10.1093/nar/gkq603 CrossRefGoogle ScholarPubMed
Cingolani, P, Platts, A, Wang, LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6: 8092. doi: 10.4161/fly.19695 CrossRefGoogle ScholarPubMed
Rentzsch, P, Witten, D, Cooper, GM, Shendure, J, Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019; 47: D886D894. doi: 10.1093/nar/gky1016 CrossRefGoogle ScholarPubMed
Landrum, MJ, Lee, JM, Riley, GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucl Acids Res 2014; 42. doi: 10.1093/nar/gkt1113 CrossRefGoogle ScholarPubMed
Richards, S, Aziz, N, Bale, S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405424. doi: 10.1038/gim.2015.30 CrossRefGoogle ScholarPubMed
Frisso, G, Limongelli, G, Pacileo, G, et al. A child cohort study from southern Italy enlarges the genetic spectrum of hypertrophic cardiomyopathy. Clin Genet 2009; 76: 91101. doi: 10.1111/j.1399-0004.2009.01190.x CrossRefGoogle ScholarPubMed
Page, SP, Kounas, S, Syrris, P, et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet 2012; 5: 156166. doi: 10.1161/CIRCGENETICS.111.960831 CrossRefGoogle ScholarPubMed
Yiu, KH, Atsma, DE, Delgado, V, et al. Myocardial structural alteration and systolic dysfunction in preclinical hypertrophic cardiomyopathy mutation carriers. PLOS One 2012; 7: e36115. doi: 10.1371/journal.pone.0036115 CrossRefGoogle ScholarPubMed
Geisterfer-Lowrance, AAT, Kass, S, Tanigawa, G, et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 1990; 62: 9991006. doi: 10.1016/0092-8674(90)90274-I CrossRefGoogle ScholarPubMed
Millat, G, Chanavat, V, Créhalet, H, Rousson, R. Development of a high resolution melting method for the detection of genetic variations in hypertrophic cardiomyopathy. Clin Chim Acta 2010; 411: 19831991. doi: 10.1016/j.cca.2010.08.017 CrossRefGoogle ScholarPubMed
Norrish, G, Jager, J, Field, E, et al. Yield of clinical screening for hypertrophic cardiomyopathy in child first-degree relatives. Circulation 2019; 140: 184192. doi: 10.1161/CIRCULATIONAHA.118.038846 CrossRefGoogle ScholarPubMed
Atiga, WL, Fananapazir, L, McAreavey, D, Calkins, H, Berger, RD. Temporal repolarization lability in hypertrophic cardiomyopathy caused by β-myosin heavy-chain gene mutations. Circulation 2000; 101: 12371242. doi: 10.1161/01.CIR.101.11.1237 CrossRefGoogle ScholarPubMed
Van Driest, SL, Jaeger, MA, Ommen, SR, et al. Comprehensive analysis of the beta-myosin heavy chain gene in 389 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2004; 44: 602610. doi: 10.1016/j.jacc.2004.04.039 CrossRefGoogle ScholarPubMed
Tyska, MJ, Hayes, E, Giewat, M, Seidman, CE, Seidman, JG, Warshaw, DM. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res 2000; 86: 737744. doi: 10.1161/01.RES.86.7.737 CrossRefGoogle ScholarPubMed
Lowey, S, Bretton, V, Gulick, J, Robbins, J, Trybus, KM. Transgenic mouse α- and β-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences. J Biol Chem 2013; 288: 1478014787. doi: 10.1074/jbc.M113.450668 CrossRefGoogle ScholarPubMed
Abraham, MR, Bottomley, PA, Dimaano, VL, et al. Creatine kinase adenosine triphosphate and phosphocreatine energy supply in a single kindred of patients with hypertrophic cardiomyopathy. Am J Cardiol 2013; 112: 861866. doi: 10.1016/j.amjcard.2013.05.017 CrossRefGoogle Scholar
Miller, EM, Hinton, RB, Czosek, R, et al. Genetic testing in pediatric left ventricular noncompaction. Circ Cardiovasc Genet 2017; 10. doi: 10.1161/CIRCGENETICS.117.001735 CrossRefGoogle ScholarPubMed
Delgado, A, Moreira, D, Rodrigues, B, et al. Hypertrophic cardiomyopathy associated with left ventricular noncompaction cardiomyopathy and coronary fistulae: a case report. One genotype, three phenotypes? Rev Port Cardiol 2013; 32: 919924. doi: 10.1016/j.repc.2013.05.002 CrossRefGoogle Scholar
Vasilescu, C, Ojala, TH, Brilhante, V, et al. Genetic basis of severe childhood-onset cardiomyopathies. J Am Coll Cardiol 2018; 72: 23242338. doi: 10.1016/j.jacc.2018.08.2171 CrossRefGoogle ScholarPubMed
Faita, F, Vecoli, C, Foffa, I, Andreassi, MG. Next generation sequencing in cardiovascular diseases SEpiAs View project PRELUDE-Preclinical Tool for Advanced Translational Research with Ultrashort and Ultraintense X-ray Pulses (PRIN 2015) View project. World J Cardiol 2012. doi: 10.4330/wjc.v4.i10.288 Google Scholar
Mogensen, J, Van Tintelen, JP, Fokstuen, S, et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J 2015; 36: 13671370. doi: 10.1093/eurheartj/ehv122 CrossRefGoogle Scholar
Reza, N, Musunuru, K, Owens, AT. From hypertrophy to heart failure: what is new in genetic cardiomyopathies. Curr Heart Fail Rep 2019; 16: 157167. doi: 10.1007/s11897-019-00435-0 CrossRefGoogle ScholarPubMed
Maron, BJ, Maron, MS, Semsarian, C. Genetics of hypertrophic cardiomyopathy after 20 years clinical perspectives. J Am Coll Cardiol 2012; 60: 705715. doi: 10.1016/j.jacc.2012.02.068 CrossRefGoogle ScholarPubMed
Colan, SD, Lipshultz, SE, Lowe, AM, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation 2007; 115: 773781. doi: 10.1161/CIRCULATIONAHA.106.621185 CrossRefGoogle ScholarPubMed
Wilkinson, JD, Landy, DC, Colan, SD, et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin 2010; 6: 401413, vii. doi: 10.1016/j.hfc.2010.05.002 CrossRefGoogle ScholarPubMed
Ouellette, AC, Mathew, J, Manickaraj, AK, et al. Clinical genetic testing in pediatric cardiomyopathy: is bigger better? Clin Genet 2018; 93: 3340. doi: 10.1111/cge.13024 CrossRefGoogle Scholar
Li, L, Bainbridge, MN, Tan, Y, Willerson, JT, Marian, AJ. A potential oligogenic etiology of hypertrophic cardiomyopathy: a classic single-gene disorder. Circ Res 2017; 120: 10841090. doi: 10.1161/CIRCRESAHA.116.310559 CrossRefGoogle ScholarPubMed
Lu, C, Wu, W, Liu, F, et al. Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies. J Trans Med 2018; 16: 241. doi: 10.1186/s12967-018-1605-5 CrossRefGoogle ScholarPubMed
Kassem, HS, Azer, RS, Ayad, MS, et al. Early results of sarcomeric gene screening from the Egyptian national BA-HCM program. J Cardiovasc Trans Res 2013; 6: 6580. doi: 10.1007/s12265-012-9425-0 CrossRefGoogle ScholarPubMed
Sh Kassem, H, Walsh, R, Barton, PJ, et al. A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2) using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt. Egypt J Med Human Genet 2017; 18: 381387. doi: 10.1016/j.ejmhg.2017.05.002 CrossRefGoogle Scholar
Rubattu, S, Bozzao, C, Pennacchini, E, et al. A next-generation sequencing approach to identify gene mutations in early- and late-onset hypertrophic cardiomyopathy patients of an Italian cohort. Int J Mol Sci 2016; 17: 1239. doi: 10.3390/ijms17081239 CrossRefGoogle ScholarPubMed
Kühnisch, J, Herbst, C, Al-Wakeel-Marquard, N, et al. Targeted panel sequencing in pediatric primary cardiomyopathy supports a critical role of TNNI3. Clin Genet 2019; 96: 549559. doi: 10.1111/cge.13645 CrossRefGoogle ScholarPubMed
Nagyova, E, Radvanszky, J, Hyblova, M, et al. Targeted next-generation sequencing in Slovak cardiomyopathy patients. Bratisl Med J 2019; 120: 4651. doi: 10.4149/BLL_2019_007 CrossRefGoogle ScholarPubMed
Lopes, LR, Zekavati, A, Syrris, P, et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet 2013; 50: 228239. doi: 10.1136/jmedgenet-2012-101270 CrossRefGoogle ScholarPubMed
Supplementary material: File

Darwish et al. supplementary material

Table S1

Download Darwish et al. supplementary material(File)
File 15.6 KB
Supplementary material: File

Darwish et al. supplementary material

Table S2

Download Darwish et al. supplementary material(File)
File 45.1 KB