Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T13:06:03.400Z Has data issue: false hasContentIssue false

Developmental anomalies of the outflow tracts and aortic arch: towards an understanding of the role of deletions within the 22nd chromosome

Published online by Cambridge University Press:  19 August 2008

Doff B. McElhinney*
Affiliation:
Children's Hospital of Philadelphia, Philadelphia, PA, USA
Robert H. Anderson
Affiliation:
Paediatrics, Imperial College School of Medicine at the Nacional Heart and Lung Institute, London, UK
*
Doff B. McElhinney, MD, Children's Hospital of Philadelphia, 34th Street and Civic Center Blvd, Rm 9557, Philadelphia, PA 19104, USA. Tel: (215) 590-1000; Fax: (215) 590-2768
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial Comments
Copyright
Copyright © Cambridge University Press 1999

References

1.Momma, K, Ando, , Matsuoka, R, Joo, K. Interruption of the aortic arch associated with deletion of chromonsome 22q11 is associated with a subarterial and doubly committed ventricular septal defect in Japanese patients. Cardiol Young 1999; 9(5): 463467Google ScholarPubMed
2.Takahashi, K, Kuwahara, T, Nagatsu, M. Interrupted aortic arch at the isthmus with DiGeorge syndrome and 22q11.2 deletion. Cardiol Young 1999; 9(5): 516518CrossRefGoogle ScholarPubMed
3.Momma, K, Kondo, C, Ando, M, Matsuoka, R, Takao, A. Tetralogy of Fallot associated with chromosome 22q11 deletion. Am J Cardiol 1995;76: 618621CrossRefGoogle ScholarPubMed
4.Momma, K, Kondo, C, Matsuoka, R. Tetralogy of Fallot with pulmonary atresia associated with chromosome 22q11 deletion. J Am Coll Cardiol 1996; 27: 198202Google ScholarPubMed
5.Momma, K, Ando, M, Matsuoka, R. Truncus arteriosus communis associated with chromosome 22q11 deletion. J Am Coll Cardiol 1997;30: 10671071CrossRefGoogle ScholarPubMed
6.Goldmuntz, E, Clark, BJ, Mitchell, LE, Jawad, AF, Cuneo, BF, Reed, L, McDonald-McGinn, D, Chien, P, Feuer, J, Zackai, EH, Emanuel, BS, Driscoll, DA. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 1998;32: 492498CrossRefGoogle ScholarPubMed
7.Rauch, A, Hofbeck, M, Leipold, G, Klinge, J, Trautmann, U, Kirsch, M, Singer, H, Pfeiffer, RA. Incidence and significance of 22q11.2 hemizygosity in patients with interrupted aortic arch. Am J Med Genet 1998;24: 3223313.0.CO;2-N>CrossRefGoogle Scholar
8.Lewin, MB, Lindsay, EA, Jurecic, v, Goytia, V, Towbin, JA, Baldini, A. A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 1997;80: 493497CrossRefGoogle ScholarPubMed
9.Iserin, L, de Lonlay, P, Viot, G, Sidi, D, Kachaner, J, Munnich, A, Lyonnet, S, Vekemans, M, Bonnet, D. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr 1998;157: 881884CrossRefGoogle ScholarPubMed
10.Moerman, P, Goddeeris, P, Lauwerijns, J, van der Hauwaert, LG. Cardiovascular malformations in DiGeorge syndrome (congenital absence or hypoplasia of thymus). Br Heart J 1980;44: 452459CrossRefGoogle ScholarPubMed
11.Kirby, ML, Waldo, KL. Neural crest and cardiovascular patterning. Circ Res 1995;77: 211215CrossRefGoogle ScholarPubMed
12.Celoria, GC, Patton, RB. Congenital absence of the aortic arch. Am Heart J 1959;58: 407413CrossRefGoogle ScholarPubMed
13.Al-Marsafawy, HM, Ho, SY, Redington, AN, Anderson, RH. The relationship of the outlet septum to the aortic outflow tract in hearts with interruption of the aortic arch. J Thorac Cardiovasc Surg 1995;109: 12251236CrossRefGoogle Scholar
14.Van Mierop, LH, Kutsche, LM. Interruption of the aortic arch and coarctation of the aorta: pathogenetic relations. Am J Cardiol 1984;54: 829834CrossRefGoogle ScholarPubMed
15.Braunlin, E, Peoples, WM, Freedom, RM, Fyler, DC, Goldblatt, A, Edwards, JE. Interruption of the aortic arch with aorticopulmonary septal defect: An anatomic review. Pediatr Cardiol 1982;3: 329335CrossRefGoogle ScholarPubMed
16.Rudolph, AM, Heymann, MA, Spitznas, U. Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol 1972;30: 514525CrossRefGoogle ScholarPubMed
17.Shinebourne, EA, Elseed, AM. Relation between fetal flow patterns, coarctation of the aorta and pulmonary blood flow. Br Heart J 1974;36: 492498CrossRefGoogle ScholarPubMed
18.Moore, GW, Hutchins, GM. Association of interrupted aortic arch with malformation producing reduced blood flow to the fourth aortic arches. Am J Cardiol 1978;42: 467472CrossRefGoogle Scholar
19.Kirby, ML, Gale, TF, Stewart, DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983;220: 10591061CrossRefGoogle ScholarPubMed
20.Thompson, RP, Abercrombie, V, Wong, W. Morphogenesis of the truncus arteriosus of the chick embryo heart: Movements of autoradiographic tattoos during septation. Anat Rec 1987;218: 434440Google ScholarPubMed
21.Garcia-Pelaez, I, Arteaga, M. Experimental study of the development of the truncus arteriosus of the chick embryo heart: I. Time of appearance. Anat Rec 1993;237: 378384CrossRefGoogle ScholarPubMed
22.Waldo, K, Miyagawa-Tomita, S, Kuminski, D, Kirby, ML. Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: Aortic sac to ventricular septal closure. Dev Biol 1998;196: 129144CrossRefGoogle ScholarPubMed
23.Ya, J, van den Hoff, MJB, de Boer, PAJ, Tesink-Taekema, S, Franco, D, Moorman, AFM, Lamers, WH. Normal development of the outflow tract in the rat. Circ Res 1998;82: 464472CrossRefGoogle ScholarPubMed
24.Poelmann, RE, Mikawa, T, Gittenberger-de, Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: Differentiation and apoptosis.. Dev Dynam 1998;212: 3733843.0.CO;2-E>CrossRefGoogle ScholarPubMed
25.Jonas, RA, Quaegebeur, JM, Kirklin, JW, Blackstone, EH, Daicoff, G. Outcomes in patients with interrupted aortic arch: A multiinsitutional study. J Thorac Cardiovasc Surg 1994;107: 10991113CrossRefGoogle ScholarPubMed
26.Momma, K, Toyama, K, Takao, A, Ando, M, Nakazawa, M, Hirosawa, K, Imai, Y. Natural history of subarterial infundibular ventricular septal defect. Am Heart J 1984;108: 13121317CrossRefGoogle ScholarPubMed
27.Okita, Y, Miki, S, Ueda, Y, Tahata, T, Sakai, T, Matsuyama, K, Matsumura, M, Tamura, T. Early and late results of repair of tetralogy of Fallot with subarterial ventricular septal defect: A comparative evaluation of tetralogy with perimembranous ventricular septal defect. J Thorac Cardiovasc Surg 1995;110: 180185CrossRefGoogle ScholarPubMed
28.Van Mierop, LHS, Kutsche, LM. Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 1986;58: 133137CrossRefGoogle ScholarPubMed
29.Bockman, DE, Redmond, ME, Waldo, K, Davis, H, Kirby, ML. Effect of neural crest ablation on the development of the heart and arch arteries in the chick. Am J Anat 1987;180: 332341CrossRefGoogle ScholarPubMed
30.Momma, K, Ando, M, Takao, A, Miyagawa-Tomita, S. Fetal cardiovascular morphology of truncus arteriosus with or without truncal valve insufficiency in the rat. Circulation 1991;83: 20942100CrossRefGoogle ScholarPubMed
31.Ya, J, Erdtsieck-Ernste, EBHW, de Boer, PAJ, van Kempen, MJA, Jonsma, H, Gros, D, Moorman, AFM, Lamers, WH. Heart defects in connexin43-deficient mice. Circ Res 1998;82: 360366CrossRefGoogle ScholarPubMed
32.Thomas, T, Kurihara, H, Yamagishi, H, Kurihara, Y, Yazaki, Y, Olson, EN, Srivastava, D.. A signalling cascade involving endothelin-1, dHAND and Msxl regulates development of neural-crest-derived branchial arch mesenchyme. Development 1998;125: 30053014CrossRefGoogle Scholar
33.Wilming, LG, Snoeren, CA, van Rijswijk, A, Grosveld, F, Meijers, C. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients. Hum Mol Genet 1997;6: 247258CrossRefGoogle Scholar
34.Gottlieb, S, Emanuel, BS, Driscoll, DA, Sellinger, B, Wang, Z, Roe, B, Budarf, ML. The DiGeorge syndrome minimal critical region contains a goosecoid-like (GSCL) homeobox gene that is expressed early in human development. Am J Hum Genet 1997;60: 11941201Google ScholarPubMed
35.Yamagishi, H, Gard, V, Matsuoka, R, Thomas, T, Srivastava, D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999;283: 11581161CrossRefGoogle ScholarPubMed
36.Yanagisawa, H, Hammer, RE, Richardson, JA, Williams, SC, Clouthier, DE, Yanagisawa, M. Role of endothelin-1/endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 1998;102: 2233CrossRefGoogle ScholarPubMed
37.Waldo, K, Zdanowicz, M, Burch, J, Kumiski, DH, Stadt, HA, Godt, RE, Creazzo, TL, Kirby, ML. A novel role for cardiac neural crest in heart development. J Clin Invest 1999;103: 14991507CrossRefGoogle ScholarPubMed
38.Hogers, B, DeRuiter, MC, Gittenberger-de, Groot AC, Poelmann, RE. Unilateral vitelline vein ligation alters the intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 1997;80: 473–381CrossRefGoogle ScholarPubMed
39.Davies, PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75: 519560CrossRefGoogle ScholarPubMed
40.Bristow, JD, Bernstein, HS. Counseling families with chromosome 22q11 deletions: The catch in CATCH-22. J Am Coll Cardiol 1998;32: 499501Google ScholarPubMed