Article contents
Computational fluid dynamics simulations as a complementary study for transcatheter endovascular stent implantation for re-coarctation of the aorta associated with minimal pressure drop: an aneurysmal ductal ampulla with aortic isthmus narrowing
Published online by Cambridge University Press: 14 June 2019
Abstract
Transcatheter stent implantation has been employed to treat re-coarctation of the aorta in adolescents and young adults. The aim of this work is to use computational fluid dynamics to characterise haemodynamics associated with re-coarctation involving an aneurysmal ductal ampulla and aortic isthmus narrowing, which created minimal pressure drop, and to incorporate computational fluid dynamics’s findings into decision-making concerning catheter-directed treatment.
Computational fluid dynamics permits numerically solving the Navier–Stokes equations governing pulsatile flow in the aorta, based on patient-specific data. We determined flow-velocity fields, wall shear stresses, oscillatory shear indices, and particle stream traces, which cannot be ascertained from catheterisation data or magnetic resonance imaging.
Computational fluid dynamics showed that, as flow entered the isthmus, it separated from the aortic wall, and created vortices leading to re-circulating low-velocity flow that induced low and multidirectional wall shear stress, which could sustain platelet-mediated thrombus formation in the ampulla. In contrast, as flow exited the isthmus, it created a jet leading to high-velocity flow that induced high and unidirectional wall shear stress, which could eventually undermine the wall of the descending aorta.
We used computational fluid dynamics to study re-coarctation involving an aneurysmal ductal ampulla and aortic isthmus narrowing. Despite minimal pressure drop, computational fluid dynamics identified flow patterns that would place the patient at risk for: thromboembolic events, rupture of the ampulla, and impaired descending aortic wall integrity. Thus, catheter-directed stenting was undertaken and proved successful. Computational fluid dynamics yielded important information, not only about the case presented, but about the complementary role it can serve in the management of patients with complex aortic arch obstruction.
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press 2019
References
- 2
- Cited by