Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:58:42.314Z Has data issue: false hasContentIssue false

Cognitive flexibility in critical CHD: a target for intervention

Published online by Cambridge University Press:  23 July 2020

Adam R. Cassidy*
Affiliation:
Center for Neuropsychology, Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
*
Author for correspondence: Adam R. Cassidy, PhD, ABPP, Center for Neuropsychology, Department of Psychiatry, Boston Children’s Hospital, Boston, MA02115, USA. Phone: +1 617-355-0478. E-mail: [email protected]

Abstract

Most children born with even the most critical forms of CHD are now surviving well into adulthood. However, with increased survival has come increased recognition of the diverse neurobehavioural and psychosocial challenges these children experience. Among these challenges are deficits in executive function skills, including inhibitory control, working memory, and cognitive flexibility. Over the past several years, whereas inhibitory control and working memory deficits have garnered particular attention among clinicians and interventionists, relatively less attention has been paid to cognitive flexibility. This is unfortunate given both the high prevalence of cognitive flexibility deficits observed in children and adolescents with critical CHD, and also the far-reaching relevance of cognitive flexibility in helping individuals achieve optimal quality of life across the lifespan. This paper reviews the construct of cognitive flexibility, including its definition, development, measurement, and neuroanatomical basis, provides a summary of how cognitive flexibility is affected by CHD, and offers evidence-based recommendations to systematically support the development of cognitive flexibility within the context of CHD.

Type
Review Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Warnes, CA, Liberthson, R, Danielson, GK, et al.Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 2001; 37: 11701175. doi: 10.1016/S0735-1097(01)01272-4CrossRefGoogle ScholarPubMed
Spector, LG, Menk, JS, Knight, JH, et al.Trends in long-term mortality after congenital heart surgery. J Am Coll Cardiol 2018; 71: 24342446. doi: 10.1016/j.jacc.2018.03.491CrossRefGoogle ScholarPubMed
Marino, BS, Lipkin, PH, Newburger, JW, et al.Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 11431172. doi: 10.1161/CIR.0b013e318265ee8aCrossRefGoogle ScholarPubMed
Clouchoux, C, du Plessis, AJ, Bouyssi-Kobar, M, et al.Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 2013; 23: 29322943. doi: 10.1093/cercor/bhs281CrossRefGoogle ScholarPubMed
Limperopoulos, C, Tworetzky, W, McElhinney, DB, et al.Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010; 121: 2633. doi: 10.1161/CIRCULATIONAHA.109.865568CrossRefGoogle ScholarPubMed
Ortinau, CM, Rollins, C, Gholipour, A, et al.Early emerging sulcal patterns are atypical in fetuses with congenital heart disease. Cereb Cortex 2018; 29: 36053616. doi: 10.1093/cercor/bhy235CrossRefGoogle Scholar
Schellen, C, Ernst, S, Gruber, GM, et al.Fetal MRI detects early alterations of brain development in tetralogy of fallot. Am J Obstet Gynecol 2015; 213: 392e1392e7. doi: 10.1016/j.ajog.2015.05.046CrossRefGoogle ScholarPubMed
Sun, L, Macgowan, C, Sled, J, et al.Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131: 13131323. doi: 10.1161/CIRCULATIONAHA.114.013051CrossRefGoogle ScholarPubMed
Rivkin, MJ, Watson, CG, Scoppettuolo, LA, et al.Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg 2013; 146: 543-9.e1. doi: 10.1016/j.jtcvs.2012.12.006CrossRefGoogle Scholar
von Rhein, M, Buchmann, A, Hagmann, C, et al.Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain 2014; 137: 268276. doi: 10.1093/brain/awt322CrossRefGoogle ScholarPubMed
Panigrahy, A, Schmithorst, VJ, Wisnowski, JL, et al.Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries. NeuroImage Clin 2015; 7: 438448. doi: 10.1016/j.nicl.2015.01.013CrossRefGoogle ScholarPubMed
Watson, CG, Stopp, C, Newburger, JW, Rivkin, MJ.Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries. Brain Behav 2018; 8: e00834. doi: 10.1002/brb3.834CrossRefGoogle ScholarPubMed
Watson, CG, Asaro, LA, Wypij, D, Robertson, RL, Newburger, JW, Rivkin, MJ.Altered gray matter in adolescents with d-Transposition of the great arteries. J Pediatr 2016; 169: 3643e1. doi: 10.1016/j.jpeds.2015.09.084CrossRefGoogle ScholarPubMed
Bolduc, M-EE, Lambert, H, Ganeshamoorthy, S, Brossard-Racine, M.Structural brain abnormalities in adolescents and young adults with congenital heart defect: a systematic review. Dev Med Child Neurol. 2018; 60: 12091224. doi: 10.1111/dmcn.13975CrossRefGoogle Scholar
Fontes, K, Rohlicek, CV, Saint-Martin, C, et al.Hippocampal alterations and functional correlates in adolescents and young adults with congenital heart disease. Hum Brain Mapp. 2019; 40: 35483560. doi: 10.1002/hbm.24615Google Scholar
Munoz-Lopez, M, Hoskote, A, Chadwick, MJ, et al.Hippocampal damage and memory impairment in congenital cyanotic deart disease. Hippocampus 2017; 27: 417424. doi: 10.1002/hipo.22700CrossRefGoogle Scholar
Morton, SU, Maleyeff, L, Wypij, D, et al.Abnormal left-hemispheric sulcal patterns correlate with neurodevelopmental outcomes in subjects with single ventricular congenital heart disease. Cereb Cortex 2019; 30: 476487. doi: 10.1093/cercor/bhz015CrossRefGoogle Scholar
Semmel, ES, Dotson, VM, Burns, TG, Mahle, WT, King, TZ.Posterior cerebellar volume and executive function in young adults with congenital heart disease. J Int Neuropsychol Soc 2018; 24: 110. doi: 10.1017/S1355617718000310CrossRefGoogle ScholarPubMed
Rollins, CK, Asaro, LA, Akhondi-Asl, A, et al.White matter volume predicts language development in congenital heart disease. J Pediatr 2016; 181: 4248.e2. doi: 10.1016/j.jpeds.2016.09.070CrossRefGoogle ScholarPubMed
Schmithorst, VJ, Votava-Smith, JK, Tran, N, et al.Structural network topology correlates of microstructural brain dysmaturation in term infants with congenital heart disease. Hum Brain Mapp 2018; 39: 45934610. doi: 10.1002/hbm.24308CrossRefGoogle ScholarPubMed
Cassidy, AR, Ilardi, D, Bowen, SR, et al.Congenital heart disease: a primer for the pediatric neuropsychologist. Child Neuropsychol 2018; 24: 859902. doi: 10.1080/09297049.2017.1373758CrossRefGoogle ScholarPubMed
Calderon, J, Bellinger, DC.Executive function deficits in congenital heart disease: why is intervention important? Cardiol Young 2015; 25: 12381246. doi: 10.1017/S1047951115001134CrossRefGoogle ScholarPubMed
Calderon, J.Executive function in patients with congenital heart disease: only the tip of the iceberg? J Pediatr 2016; 173: 79. doi: 10.1016/j.jpeds.2016.02.066CrossRefGoogle ScholarPubMed
Cassidy, AR, White, MT, DeMaso, DR, Newburger, JW, Bellinger, DC.Executive function in children and adolescents with critical cyanotic congenital heart disease. J Int Neuropsychol Soc 2015; 20: 3449. doi: 10.1017/S1355617714001027CrossRefGoogle Scholar
Mills, R, McCusker, CG, Tennyson, C, Hanna, D.Neuropsychological outcomes in CHD beyond childhood: a meta-analysis. Cardiol Young. 2018: 28: 421431. doi: 10.1017/S104795111700230XCrossRefGoogle ScholarPubMed
Diamond, A.Executive functions. Annu Rev Psychol 2013; 64: 135168. doi: 10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Allan, NP, Hume, LE, Allan, DM, Farrington, AL, Lonigan, CJ.Relations between inhibitory control and the development of academic skills in preschool and kindergarten : a meta-analysis. Dev Psychol 2014; 50: 23682379.10.1037/a0037493CrossRefGoogle ScholarPubMed
Bull, R, Scerif, G.Executive functioning as a predictor of children’s mathematics ability: inhibition, switching, and working memory. Dev Neuropsychol 2001; 19: 273293. doi: 10.1207/S15326942DN1903_3CrossRefGoogle ScholarPubMed
Clark, CAC, Shef, TD, Wiebe, SA, Espy, KA.Longitudinal associations between executive control and developing mathematical competence in preschool boys and girls. 2013; 84: 662677. doi: 10.1111/j.1467-8624.2012.01854.xCrossRefGoogle Scholar
Passolunghi, MC, Lanfranchi, S.Domain-specific and domain-general precursors of mathematical achievement: a longitudinal study from kindergarten to first grade. Br J Educ Psychol 2012; 82: 4263. doi: 10.1111/j.2044-8279.2011.02039.xCrossRefGoogle ScholarPubMed
Alloway, TP, Gathercole, SE, Kirkwood, H, Elliott, J.The cognitive and behavioral characteristics of children with low working memory. Child Dev 2009; 80: 606621. doi: 10.1111/j.1467-8624.2009.01282.xCrossRefGoogle ScholarPubMed
Bull, R, Lee, K.Executive functioning and mathematics achievement. Child Dev Perspect 2014; 8: 3641. doi: 10.1111/cdep.12059CrossRefGoogle Scholar
Gathercole, SE, Alloway, TP, Willis, C, Adams, A-M.Working memory in children with reading disabilities. J Exp Child Psychol 2006; 93: 265281. doi: 10.1016/j.jecp.2005.08.003CrossRefGoogle ScholarPubMed
Li, Y, Geary, DC.Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS One 2013; 8: e70160. doi: 10.1371/journal.pone.0070160CrossRefGoogle ScholarPubMed
Moffitt, TE, Arseneault, L, Belsky, D, et al.A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci U S A 2011; 108: 26932698. doi: 10.1073/pnas.1010076108CrossRefGoogle ScholarPubMed
Calderon, J, Angeard, N, Moutier, S, Plumet, M-H, Jambaqué, I, Bonnet, D.Impact of prenatal diagnosis on neurocognitive outcomes in children with transposition of the great arteries. J Pediatr 2012; 161: 94-8.e1. doi: 10.1016/j.jpeds.2011.12.036CrossRefGoogle Scholar
Gaynor, JW, Gerdes, M, Nord, AS, et al.Is cardiac diagnosis a predictor of neurodevelopmental outcome after cardiac surgery in infancy? J Thorac Cardiovasc Surg 2010; 140: 12301237. doi: 10.1016/j.jtcvs.2010.07.069CrossRefGoogle ScholarPubMed
Schaefer, C, von Rhein, M, Knirsch, W, et al.Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease. Dev Med Child Neurol 2013; 55: 11431149. doi: 10.1111/dmcn.12242CrossRefGoogle ScholarPubMed
Calderon, J, Bonnet, D, Courtin, C, Concordet, S, Plumet, M-H, Angeard, N.Executive function and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries. Dev Med Child Neurol 2010; 52: 11391144. doi: 10.1111/j.1469-8749.2010.03735.xCrossRefGoogle ScholarPubMed
Calderon, J, Jambaqué, I, Bonnet, D.Executive functions development in 5- to 7-year-old children with transposition of the great arteries : a longitudinal study. Dev Neuropsychol 2014; 39: 365374. doi: 10.1080/87565641.2014.916709CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, DuPlessis, AJ, et al.Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston circulatory arrest trial. J Thorac Cardiovasc Surg 2003; 126: 13851396. doi: 10.1016/S0022-5223(03)00711-6CrossRefGoogle ScholarPubMed
DeMaso, DR, Labella, M, Taylor, GA, et al.Psychiatric disorders and function in adolescents with d-Transposition of the great arteries. J Pediatr 2014; 165: 760766. doi: 10.1016/j.jpeds.2014.06.029CrossRefGoogle ScholarPubMed
DeMaso, DR, Calderon, J, Taylor, GA, et al.Psychiatric disorders in adolescents with single ventricle congenital heart disease. Pediatrics 2017; 139:e20162241. doi: 10.1542/peds.2016-2241CrossRefGoogle ScholarPubMed
Holland, JE, Cassidy, AR, Stopp, C, et al.Psychiatric disorders and function in adolescents with tetralogy of fallot. J Pediatr 2017; 187: 165173. doi: 10.1016/j.jpeds.2017.04.048CrossRefGoogle ScholarPubMed
Berger, S.Attention deficit hyperactivity disorder medications in children with heart disease. Curr Opin Pediatr 2016; 28: 607612. doi: 10.1097/MOP.0000000000000388CrossRefGoogle ScholarPubMed
Sanz, JH, Berl, MM, Armour, AC, Wang, J, Cheng, YI, Donofrio, MT.Prevalence and pattern of executive dysfunction in school age children with congenital heart disease. Congenit Heart Dis 2017; 12: 202209(. doi: 10.1111/chd.12427CrossRefGoogle ScholarPubMed
World Health Organization. A preliminary evaluation of an acceptance and commitment therapy based program for adult congenital heart disease patients. https://apps.who.int/trialsearch/Trial2.aspx?TrialID=ACTRN12614000425695. Accessed May 5, 2020.Google Scholar
Lee, JK, Orsillo, SM.Investigating cognitive flexibility as a potential mechanism of mindfulness in generalized anxiety disorder. J Behav Ther Exp Psychiatry 2014; 45: 208216. doi: 10.1016/j.jbtep.2013.10.008CrossRefGoogle ScholarPubMed
Happe, F.Autism: cognitive deficit or cognitive style? Trends Cogntive Sci 1999; 3: 216222. doi: 10.1016/S1364-6613(99)01318-2CrossRefGoogle ScholarPubMed
Razzaghi, H, Oster, M, Reefhuis, J.Long-term outcomes in children with congenital heart disease: national health interview survey. J Pediatr 2015; 166: 119124.e1. doi: 10.1016/j.jpeds.2014.09.006CrossRefGoogle ScholarPubMed
Tsao, P-C, Lee, Y-S, Jeng, M-J, et al.Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: a nationwide population-based longitudinal study. Eur Child Adolesc Psychiatry 2017; 26: 13511359. doi: 10.1007/s00787-017-0989-8CrossRefGoogle ScholarPubMed
Engel de Abreu, PMJ, Abreu, N, Nikaedo, CC, et al.Executive functioning and reading achievement in school: a study of Brazilian children assessed by their teachers as “poor readersâ€. Front Psychol 2014; 5: 114. doi: 10.3389/fpsyg.2014.00550CrossRefGoogle Scholar
Purpura, DJ, Schmitt, SA, Ganley, CM.Foundations of mathematics and literacy: the role of executive functioning components. J Exp Child Psychol 2017; 153: 1534. doi: 10.1016/j.jecp.2016.08.010CrossRefGoogle ScholarPubMed
Cassidy, AR, White, MT, DeMaso, DR, Newburger, JW, Bellinger, DC.Processing speed, executive function, and academic achievement in children with dextro-transposition of the great arteries: testing a longitudinal developmental cascade model. Neuropsychology 2016; 30: 874885. doi: 10.1037/neu0000289CrossRefGoogle ScholarPubMed
Genet, JJ, Siemer, M.Flexible control in processing affective and non-affective material predicts individual differences in trait resilience. Cogn Emot 2011; 25: 380388. doi: 10.1080/02699931.2010.491647CrossRefGoogle ScholarPubMed
Kashdan, TB, Rottenberg, J.Psychological flexibility as a fundamental aspect of health. Clin Psychol Rev 2010; 30: 865878. doi: 10.1016/j.cpr.2010.03.001CrossRefGoogle ScholarPubMed
Davis, J, Marra, C, Najafzadeh, M, Liu-Ambrose, T.The independent contribution of executive functions to health related quality of life in older women. BMC Geriatr 2010; 10: 16. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L360232908 10.1186/1471-2318-10-16CrossRefGoogle ScholarPubMed
Davidson, MC, Amso, D, Anderson, LC, Diamond, A.Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 2006; 44: 20372078. doi: 10.1016/j.neuropsychologia.2006.02.006CrossRefGoogle ScholarPubMed
Dajani, DR, Uddin, LQ.Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci 2015; 38: 571578. doi: 10.1016/j.tins.2015.07.003CrossRefGoogle ScholarPubMed
Perner, J, Lang, B.What causes 3-year-olds’ difficulty on the dimensional change card sorting task? Infant Child Dev 2002; 11: 93105. doi: 10.1002/icd.299CrossRefGoogle Scholar
Brooks, PJ, Hanauer, JB, Padowska, B, Rosman, H.The role of selective attention in preschoolers ’ rule use in a novel dimensional card sort. Cognit Dev 2003; 18: 195215. doi: 10.1016/S0885-2014(03)00020-0CrossRefGoogle Scholar
Diamond, A, Carlson, SM, Beck, DM.Preschool children’s performance in task switching on the dimensional change card sort task: separating the dimensions aids the ability to switch. Dev Neuropsychol 2005; 28: 689729.10.1207/s15326942dn2802_7CrossRefGoogle Scholar
Cepeda, NJ, Kramer, AF, Gonzalez de Sather, JC.Changes in executive control across the life span: examination of task-switching performance. Dev Psychol 2001; 37: 715730. doi: 10.1037/0012-1649.37.5.715CrossRefGoogle ScholarPubMed
Bunge, SA, Zelazo, PD.A brain-based account of the development of rule use in childhood. Curr Dir Psychol Sci 2006; 15: 118121. doi: 10.1111/j.0963-7214.2006.00419.xCrossRefGoogle Scholar
Rubia, K, Smith, AB, Woolley, J, et al.Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum Brain Mapp 2006; 27: 973993. doi: 10.1002/hbm.20237CrossRefGoogle ScholarPubMed
Nomi, J, Vij, S, Dajani, D, et al.Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage 2017; 15: 861871.CrossRefGoogle Scholar
Menon, V.Large-scale brain networks and psychopathology : a unifying triple network model. Trends Cogn Sci 2011; 15: 483506. doi: 10.1016/j.tics.2011.08.003CrossRefGoogle ScholarPubMed
Uddin, LQ, Supekar, K, Lynch, CJ, et al.Brain state differentiation and behavioral inflexibility in autism. Cereb Cortex 2015; 25: 47404747. doi: 10.1093/cercor/bhu161CrossRefGoogle ScholarPubMed
Wade, M, Prime, H, Jenkins, JM, Yeates, KO, Williams, T, Lee, K.On the relation between theory of mind and executive functioning: a developmental cognitive neuroscience perspective. Psychon Bull Rev 2018: 25: 21192214. doi: 10.3758/s13423-018-1459-0CrossRefGoogle ScholarPubMed
Peyvandi, S, De Santiago, V, Chakkarapani, E, et al.Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain injury. JAMA Pediatr 2016; 170: e15445. doi: 10.1001/jamapediatrics.2015.4450CrossRefGoogle ScholarPubMed
Bellinger, DC, Rivkin, MJ, Demaso, D, et al.Adolescents with tetralogy of Fallot: neuropsychological assessment and structural brain imaging. Cardiol Young 2015; 25: 338347. doi: 10.1017/S1047951114000031CrossRefGoogle ScholarPubMed
Poirel, N, Krakowski, CS, Sayah, S, Pineau, A, Houdé, O, Borst, G.Do you want to see the tree? Ignore the forest: inhibitory control during local processing: a negative priming study of local-global processing. Exp Psychol 2014; 61: 205214. doi: 10.1027/1618-3169/a000240CrossRefGoogle Scholar
Poirel, N, Simon, G, Cassotti, M, et al.The shift from local to global visual processing in 6-year-old children is associated with grey matter loss. PLoS One 2011; 6: 15. doi: 10.1371/journal.pone.0020879CrossRefGoogle ScholarPubMed
Bernstein, JH, Waber, DP.Developmental Scoring System for the Rey–Osterrieth Complex Figure (DSS-ROCF). Odessa, FL: Psychological Assessment Resources, 1996.Google Scholar
Bean Jaworski, JL, White, MT, DeMaso, DR, Newburger, JW, Bellinger, DC, Cassidy, AR.Visuospatial processing in adolescents with critical congenital heart disease: organization, integration, and implications for academic achievement. Child Neuropsychol 2018; 24: 451468. doi: 10.1080/09297049.2017.1283396CrossRefGoogle ScholarPubMed
Diaz, LK, Gaynor, JW, Koh, SJ, et al.Increasing cumulative exposure to volatile anesthetic agents is associated with poorer neurodevelopmental outcomes in children with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2016; 152: 482489. doi: 10.1016/j.jtcvs.2016.03.095CrossRefGoogle ScholarPubMed
Peyvandi, S, Kim, H, Lau, J, et al.The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease. J Thorac Cardiovasc Surg 2017; 155: 291300.e3. doi: 10.1016/j.jtcvs.2017.08.019CrossRefGoogle ScholarPubMed
Beca, J, Gunn, JK, Coleman, L, et al.New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 2013; 127: 971979. doi: 10.1161/CIRCULATIONAHA.112.001089CrossRefGoogle ScholarPubMed
Bellinger, DC, Watson, CG, Rivkin, MJ, et al.Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure. J Am Heart Assoc 2015; 4: e002302. doi: 10.1161/JAHA.115.002302CrossRefGoogle ScholarPubMed
Basso, MR, Schefft, BK, Ris, MD, Dember, WN.Mood and global-local visual processing. J Int Neuropsychol Soc. 1996; 2: 249255. doi: 10.1017/S1355617700001193CrossRefGoogle ScholarPubMed
Curby, K, Johnson, K, Tyson, A.Face to face with emotion: Holistic face processing is modulated by emotional state. Cogn Emot 2011; 9931:110. doi: 10.1080/02699931.2011.555752Google Scholar
Derryberry, D, Reed, MA.Anxiety and attentional focusing: trait, state and hemispheric influences. Pers Individ Dif 1998; 25: 745761. doi: 10.1016/S0191-8869(98)00117-2CrossRefGoogle Scholar
Cassidy, AR, Bernstein, JH, Bellinger, DC, Newburger, JW, DeMaso, DR.Visual-spatial processing style is associated with psychopathology in adolescents with critical congenital heart disease. Clin Neuropsychol 2019; 33:760778. doi: 10.1080/13854046.2018.1503333CrossRefGoogle ScholarPubMed
Kenworthy, L, Anthony, LG, Naiman, DQ, et al.Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. J Child Psychol Psychiatry 2014; 4: 374383. doi: 10.1111/jcpp.12161CrossRefGoogle Scholar
Whiting, DL, Deane, FP, Simpson, GK, McLeod, HJ, Ciarrochi, J.Cognitive and psychological flexibility after a traumatic brain injury and the implications for treatment in acceptance-based therapies: a conceptual review. Neuropsychol Rehabil 2017; 27: 263299. doi: 10.1080/09602011.2015.1062115CrossRefGoogle ScholarPubMed
Lønfeldt, NN, Silverman, WK, Esbjørn, BH.A systematic review and meta-analysis of the association between third-wave cognitive constructs and youth anxiety. Int J Cogn Ther 2017; 10: 115137. doi: 10.1521/ijct.2017.10.2.115CrossRefGoogle Scholar
Burke, K, Muscar, F, McCarthy, M, et al.Adapting acceptance and commitment therapy for parents of children with life-threatening illness: pilot study. Fam Syst Heal 2014; 32: 122127. doi: 10.1037/fsh0000012CrossRefGoogle ScholarPubMed
Benjamin, JZ, Harbeck-Weber, C, Ale, C, Sim, L.Becoming flexible: increase in parent psychological flexibility uniquely predicts better well-being following participation in a pediatric interdisciplinary pain rehabilitation program. J Context Behav Sci 2020; 15: 181188. doi: 10.1016/j.jcbs.2020.01.003CrossRefGoogle Scholar
Stotts, AL, Villarreal, YR, Klawans, MR, et al.Psychological flexibility and depression in new mothers of medically vulnerable infants: a mediational analysis. Matern Child Health J 2019; 23: 821829. doi: 10.1007/s10995-018-02699-9CrossRefGoogle ScholarPubMed
Graham, CD, Gouick, J, Krahé, C, Gillanders, D.A systematic review of the use of Acceptance and Commitment Therapy (ACT) in chronic disease and long-term conditions. Clin Psychol Rev 2016; 46: 4658. doi: 10.1016/j.cpr.2016.04.009CrossRefGoogle ScholarPubMed
Wallace, DP, Woodford, B, Connelly, M.Promoting psychological flexibility in parents of adolescents with chronic pain: pilot study of an 8-week group intervention. Clin Pract Pediatr Psychol 2016; 4: 405-–416. doi: 10.1037/cpp0000160CrossRefGoogle Scholar
Chambers, R, Lo, BCY, Allen, NB.The impact of intensive mindfulness training on attentional control, cognitive style, and affect. Cognit Ther Res 2008; 32: 303322. doi: 10.1007/s10608-007-9119-0CrossRefGoogle Scholar
Heeren, A, Van Broeck, N, Philippot, P.The effects of mindfulness on executive processes and autobiographical memory specificity. Behav Res Ther 2009; 47: 403409. doi: 10.1016/j.brat.2009.01.017CrossRefGoogle ScholarPubMed
Zeidan, F, Johnson, SK, Diamond, BJ, David, Z, Goolkasian, P.Mindfulness meditation improves cognition: Evidence of brief mental training. Conscious Cogn 2010; 19: 597605. doi: 10.1016/j.concog.2010.03.014CrossRefGoogle ScholarPubMed
Moore, A, Malinowski, P. Meditation, mindfulness and cognitive flexibility. Conscious Cogn 2009; 18: 176186. doi: 10.1016/j.concog.2008.12.008CrossRefGoogle ScholarPubMed
Schonert-Reichl, K, Oberle, E, Lawlor, M, et al.Enhancing cognitive and social–emotional development through a simple-to-administer mindfulness-based school program for elementary school children: a randomized controlled trial. Dev Psychol 2015; 51: 5266.CrossRefGoogle ScholarPubMed
Zelazo, PD, Lyons, KE.The potential benefits of mindfulness training in early childhood: a developmental social cognitive neuroscience perspective. Child Dev Perspect 2012; 6: 154160. doi: 10.1111/j.1750-8606.2012.00241.xCrossRefGoogle Scholar
Coto-Lesmes, R, Fernández-Rodríguez, C, González-Fernández, S.Acceptance and commitment therapy in group format for anxiety and depression. A systematic review. J Affect Disord 2020; 263: 107120. doi: 10.1016/j.jad.2019.11.154CrossRefGoogle ScholarPubMed
O’Connor, M, Munnelly, A, Whelan, R, McHugh, L.The efficacy and acceptability of third-wave behavioral and cognitive ehealth treatments: a systematic review and meta-analysis of randomized controlled trials. Behav Ther 2018; 49: 459475. doi: 10.1016/j.beth.2017.07.007CrossRefGoogle ScholarPubMed
Twohig, MP, Levin, ME.Acceptance and commitment therapy as a treatment for anxiety and depression: a review. Psychiatr Clin North Am 2017; 40: 751770. doi: 10.1016/j.psc.2017.08.009CrossRefGoogle ScholarPubMed
Khoury, B, Lecomte, T, Fortin, G, et al.Mindfulness-based therapy: a comprehensive meta-analysis. Clin Psychol Rev 2013; 33: 763771. doi: 10.1016/j.cpr.2013.05.005CrossRefGoogle ScholarPubMed
Freedenberg, VA, Hinds, PS, Berul, CI, Friedmann, E.Mindfulness based stress reduction and group support decrease stress, anxiety and depression in adolescents with cardiac diagnoses: a randomized two-group study. Pediatr Cardiol 2017; 134(Suppl 1): A11402. doi: 10.1007/s00246-017-1679-5Google Scholar
Golfenshtein, N, Deatrick, JA, Lisanti, AJ, Medoff-Cooper, B.Coping with the stress in the cardiac intensive care unit: can mindfulness be the answer? J Pediatr Nurs 2017; 37: 117126. doi: 10.1016/j.pedn.2017.08.021CrossRefGoogle Scholar
Kasparian, NA, Kan, JM, Sood, E, Wray, J, Pincus, HA, Newburger, JW.Mental health care for parents of babies with congenital heart disease during intensive care unit admission: systematic review and statement of best practice. Early Hum Dev 2019; 139: 104837. doi: 10.1016/j.earlhumdev.2019.104837CrossRefGoogle ScholarPubMed
Biglan, A, Hayes, SC, Pistorello, J.Acceptance and commitment: Implications for prevention science. Prev Sci 2008; 9: 139152. doi: 10.1007/s11121-008-0099-4CrossRefGoogle ScholarPubMed
Distefano, R, Galinsky, E, McClelland, MM, Zelazo, PD, Carlson, SM.Autonomy-supportive parenting and associations with child and parent executive function. J Appl Dev Psychol 2018; 58: 7785. doi: 10.1016/j.appdev.2018.04.007CrossRefGoogle Scholar
National Scientific Council on the Developing Child. Young Children Develop in an Environment of Relationships. Working Paper No. 1.; 2004. doi: 10.1111/j.1151-2916.1918.tb17232.xCrossRefGoogle Scholar
Butler, SC, Huyler, K, Kaza, A, Rachwal, C.Filling a significant gap in the cardiac ICU: implementation of individualised developmental care. Cardiol Young 2017; 27: 17971806. doi: 10.1017/S1047951117001469CrossRefGoogle ScholarPubMed