Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:52:10.989Z Has data issue: false hasContentIssue false

Clinical implications of acute shunt thrombosis in paediatric patients with systemic-to-pulmonary shunt re-interventions

Published online by Cambridge University Press:  31 May 2022

Puja Dutta
Affiliation:
Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
Sirisha Emani
Affiliation:
Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA Department of Surgery, Harvard Medical School, Boston, MA, USA
Juan C. Ibla
Affiliation:
Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, MA, USA Department of Anesthesia, Harvard Medical School, Boston, MA, USA
Sitaram M. Emani
Affiliation:
Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA Department of Surgery, Harvard Medical School, Boston, MA, USA
Meena Nathan*
Affiliation:
Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA Department of Surgery, Harvard Medical School, Boston, MA, USA
*
Author for correspondence: Meena Nathan, MD, MPH, FRCS, Department of Cardiac Surgery, BADER 273, 300 Longwood Ave, Boston, MA 02215, USA. Tel: +1 (617) 355-4308. E-mail: [email protected]

Abstract

Purpose:

Systemic-to-pulmonary shunts are used as a source of pulmonary blood flow in palliated Congenital Heart Disease in neonates and young infants. Shunt thrombosis, often requiring shunt interventions during index hospitalisation, is associated with poor outcomes. We hypothesised that extensive use of perioperative pro-coagulant products may be associated with shunt thrombosis.

Methods:

Children (≤18 years) undergoing systemic-to-pulmonary shunts with in-hospital shunt reinterventions between 2016 and 2020 were reviewed retrospectively. Perioperative associations to shunt thrombosis were examined by univariate logistic regression and Wilcoxon rank sum tests as appropriate. Cox and log transformed linear regression were used to analyse postoperative ventilation duration, length of stay, and cost.

Results:

Of 71 patients requiring in-hospital shunt intervention after systemic-to-pulmonary shunts, 10 (14%) had acute shunt thrombosis, and among them five (50%) died. The median age was four (interquartile range: 0-15) months. There were 40 (56%) males, 41 (58%) had single ventricle anatomy, and 29 (40%) were on preoperative anticoagulants. Patients with acute shunt thrombosis received greater volume of platelets (p = 0.04), cryoprecipitate (p = 0.02), and plasma (p = 0.04) postoperatively in the ICU; experienced more complications (p = 0.01) including re-exploration for bleeding (p = 0.008) and death (p = 0.02), had longer hospital length of stays (p = 0.004), greater frequency of other arterial/venous thrombosis (p = 0.02), and greater hospital costs (p = 0.002).

Conclusions:

Patients who develop acute shunt thrombosis receive more blood products perioperatively and experience worse hospital outcomes and higher hospital costs. Future research on prevention/early detection of shunt thrombosis is needed to improve outcomes in infants after systemic-to-pulmonary shunt surgery.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Meeting Presentation: Society of Thoracic Surgeons Annual Perioperative and Critical Care Conference, September 10-11, 2021 (Virtual).

References

Fenton, KN, Siewers, RD, Rebovich, B, Pigula, FA. Interim mortality in infants with systemic-to-pulmonary artery shunts. Ann Thorac Surg 2003 Jul; 76: 1526. DOI 10.1016/s0003-4975(03)00168-1.CrossRefGoogle ScholarPubMed
Gorla, S, Stumpf, E, Sandhu, SK. Chapter 40- the role of interventional cardiology in the management of thrombotic conditions in the pediatric population. Cardiovasc Thromb 2018; 124: 565575. DOI 10.1016/B978-0-12-812615-8.00040-5.CrossRefGoogle Scholar
Li, JS, Yow, E, Berezny, KY, et al. Clinical outcomes of palliative surgery including a systemic-to-pulmonary artery shunt in infants with cyanotic congenital heart disease: does aspirin make a difference? Circulation 2007; 116: 293297.CrossRefGoogle Scholar
Fenton, KN, Siewers, RD, Rebovich, B, Pigula, FA. Interim mortality in infants with systemic-to-pulmonary artery shunts. Ann Thorac Surg 2003; 76: 152156.CrossRefGoogle ScholarPubMed
Wessel, DL, Berger, F, Li, S, et al. Clopidogrel in infants with systemic-to-pulmonary-artery shunts. N Engl J Med 2013; 368: 23772384. DOI 10.1056/NEJMoa1114588.CrossRefGoogle Scholar
Jacobs, JP, Jacobs, ML, Maruszewski, B, et al. Initial application in the EACTS and STS congenital heart surgery databases of an empirically derived methodology of complexity adjustment to evaluate surgical case mix and results. Eur J Cardiothorac Surg 2012; 42: 775779, discussion, 779-780.CrossRefGoogle ScholarPubMed
Dorobantu, DM, Pandey, R, Sharabiani, MT, et al. Indications and results of systemic to pulmonary shunts: results from a national database. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2016; 49: 15531563. DOI 10.1093/ejcts/ezv435.CrossRefGoogle ScholarPubMed
O’Connor, MJ, Ravishankar, C, Ballweg, JA, et al. Early systemic-to-pulmonary artery shunt intervention in neonates with congenital heart disease. J Thorac Cardiovasc Surg. 2011; 142: 106112. DOI 10.1016/j.jtcvs.2010.10.033.CrossRefGoogle ScholarPubMed
Patregnani, JT, Sochet, AA, Zurakowski, D, et al. Cardiopulmonary bypass reduces early thrombosis of systemic-to-pulmonary artery shunts. World J Pediatr Congenit Heart Surg. 2018; 9: 276282. DOI 10.1177/2150135118755985.CrossRefGoogle ScholarPubMed
Headrick, AT, Qureshi, AM, Ghanayem, NS, Heinle, J, Anders, M. In-hospital morbidity and mortality after modified Blalock-Taussig-Thomas shunts. Ann Thorac Surg . Published online November 2021; 24: S00034975(21)01976-7. DOI 10.1016/j.athoracsur.2021.11.003.Google Scholar
Voravit, C, Pongsanae, D, Chareonkiat, R, Napat, P. Risk factors for in-hospital shunt thrombosis and mortality in patients weighing less than 3 kg with functionally univentricular heart undergoing a modified Blalock-Taussig shunt. Interact Cardiov Th September 2017(Pages):; 25: 407413.Google Scholar
Hobbes, B, d’Udekem, Y, Zannino, D, Konstantinov, IE, Brizard, C, Brink, J. Determinants of adverse outcomes after systemic-to-pulmonary shunts in biventricular circulation. Ann Thorac Surg 2017 Oct; 104: 13651370. DOI 10.1016/j.athoracsur.2017.06.043.Epub.CrossRefGoogle ScholarPubMed
Vitanova, K, Leopold, C, von Ohain, JP, et al. Reasons for failure of systemic-to-pulmonary artery shunts in neonates. Thorac Cardiovasc Surg 2019; 67: 27. DOI 10.1055/s-0037-1621706.Google ScholarPubMed
Jacobs, M, Brink, J, Douglas, W, Brizard, C, Sano, S. Discussion. J Thorac Cardiovasc Surg 2019; 158: 11511153.Google Scholar
Supplementary material: File

Dutta et al. supplementary material

Dutta et al. supplementary material

Download Dutta et al. supplementary material(File)
File 148.1 KB