Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T00:16:54.673Z Has data issue: false hasContentIssue false

Cardiac development: a morphologically integrated molecular approach

Published online by Cambridge University Press:  19 August 2008

Frits de Jong
Affiliation:
From the Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands
Szabolcs Virágh
Affiliation:
Department of Pathology, Haynal University of Health Sciences, Budapest, Hungary.
Antoon F.M. Moorman*
Affiliation:
From the Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands
*
Dr. Antoon F.M. Moorman, Academic Medical Center, Department of Anatomy and Embryology, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Medical Education
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hoffman, JIE. Incidence of congenital heart disease: II. Prenatal incidence. Pediarr Cardiol 1995; 16: 155165.CrossRefGoogle ScholarPubMed
2.Manasek, FJ.; Poste, G, Nicolson, GL, editors. The cell surface in anim al embrygenesis and development. Elsevier Biomedical Press, 1976; Heart development: interactions involved in cardiac morphogenesis. p. 545596.Google Scholar
3.van Mierop, LHS, Netter, FH.; Yonkman, FF, editors. The Ciba Collection of Medical Illuscrations, Heart. New York: Ciba, 1969; p. 112130.Google Scholar
4.Olson, EN, Srivastava, D. Molecular Pathways Controlling Heart Development. Science 1996; 272: 671676.Google Scholar
5.Lyons, GE. In situ analysis of the cardiac muscle gene program during embryongnesis. Trends Cardiovasc. Med. 1994; 4: 7077.Google Scholar
6.O/Brien, TX, Lee, KJ, Chien, KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc.Natl.Acad.Sci.USA 1993. 90: 51575161.CrossRefGoogle ScholarPubMed
7.Wessels, A, Vermeulen, JLM, Virágh, S, Kálmán, F, Lamers, WH, Moorman, AFM. Spatial destribution of “tissue specific” antigens in the developing human heart and skiletal muscle: II. An immunohistochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart. Anat Rec 1991. 229: 355368.Google Scholar
8.Wagenaar, GTM, Markman, MWM, Lamers, WH, Moorman, AFM. Myosin light chain 2V gene expression does not demarcate the anatomical boundaries of the rat embryonic venrricle. J Mol Cell Cardiol 1995; 27: A79Google Scholar
9.Wessels, A, Markman, MWM, Vermeulen, JLM, Anderson, RH, Moorman, AFM, Lamers, WH. The development of the atrioventricular junction in the human heart. Circ Res 1996; 78(1): 110117.CrossRefGoogle ScholarPubMed
10.McGuire, MA, De Bakker, JMT, Vermeulen, JT, Moorman, AFM, Loh, P, Thibault, B, Vermeulen, JLM, Becker, AE, Janse, MJ. Atrioventricular junctional tissue. Discrepancy between histological and electrophysiological Characteristics. Circulation 1996; 94: 571577.Google Scholar
11.McGinnis, W, Krumlauf, R. Homeobox genes and axial pattering. Cell 1992; 68: 283303.CrossRefGoogle Scholar
12.Kern, MJ, Argao, EA, Potter, SS. Homeobox genes and heart development. Trends Cardiovasc. Med. 1995; 5: 4754.Google Scholar
13.Sissman, NJ. Developmental landmarks on cardiac morphogenesis: comparative chronology. Am J Cardiol 1970; 25: 141148.CrossRefGoogle ScholarPubMed
14.Garcia-Martinez, V, Schoenwold, GC. Primitive streak origin of the cardiovascular system in avian embryos. Dev Dyn 1993; 159: 706719.Google ScholarPubMed
15.Manasek, FJ. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol. 1968; 125: 329366.CrossRefGoogle Scholar
16.Stalsberg, H, de Haan, RL. The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 1969; 19: 128137.Google Scholar
17.Virágh, S, Szabó, E, Challice, CE. Formation of primitive myo and endocardial tubes in the chicken embryo. J Mol Cell Cardiol 1989; 21: 123137.CrossRefGoogle ScholarPubMed
18.Moorman, AFM, Lamers, WH. Molecular anatorny of the developing heart. Trends Cardiovasc.Med. 1994; 4: 257264.CrossRefGoogle ScholarPubMed
19.Linask, KK, Lash, JW. Early heart development: Dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev Dyn 1993; 195: 6269.Google Scholar
20.Lee, RKK, Stainier, DYR, Weinstein, BM, Fishman, MC. Cardiovascular development in the zebrahsh. II Endocardial progenitors are sequestered within the heart field. Development 1994; 120: 33613366.CrossRefGoogle ScholarPubMed
21.Mikawa, T, Borisov, A, Brown, AMC, Fischman, DA. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication–defective retrovirus. I. Formation of the vencricular myocardium. Dev Dyn 1992; 193: 1123.Google Scholar
22.Coffin, JD, Poole, TJ. Embryonic vascular development: immunonhistovhemical idetification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 1988; 102: 735748.CrossRefGoogle Scholar
23.Noden, DM. Origins and patterinig of avia ourflow tract endocardium. Development 1991; 111: 867876.Google Scholar
24.Markwald, RR, Fitzharris, TP, Adams Smith, WN. Structural analysis of endocardial cytodifferentiation. Dev Biol 1975; 42: 160180.Google Scholar
25.Ruzicka, DL, Schwartz, RJ. Sequential cactivation during avian cardiogenesis: vasular smooth muscle a–actin gene transcripts mark the onset of cardiac differentiation. J Cell Riol 1988; 107: 25752585.Google Scholar
26.Mchugh, KM, Crawford, K, Lessard, JL. Comprehensive analysis of the developmental and tissue–specific expression of the isoactin multigene family in the rat. DevBiol 1991; 148: 442458.Google ScholarPubMed
27.Patten, BM, Kramer, TC. The initiation of conctraction in the embryonic chicken heart. Am J Anat 1933; 53: 349375.Google Scholar
28.de Jong, F, Opthof, T, Wilde, AAM, Janse, MJ, Charles, R, Lamers, WH, Moorman, AFM. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 1992; 71: 240250.Google Scholar
29.van Mierop, LHS. Localization of pacemaker in chick embryo heart at the time of inition of heartbeat.Am J Physiol 1967; 212: 407415.CrossRefGoogle Scholar
30.Barry, A. The functional significance of the cardiac jelly in the tubular of the chick embryo. Anat Rec 1948; 102: 289298.Google Scholar
31.de Jong, F, Geerts, WJC, Lamers, WH, Los, JA, Moorman, AFM. Isomysoisn expression pattern during formation of the tubular chicken heart: a 3D immunohistochemical analysis. Anat Rec 1990; 226: 213227.Google Scholar
32.de Groot, IJM, Lamers, WH, Moorman, AFM. Isomyosin expression pattern during rat heart morphogenesis: and immunohistochemical strudy. Anat Rec 1989; 224: 365373.CrossRefGoogle Scholar
33.Anderson, RH, Wilkinson, JL, Becker, AE. The bulbus cordis - a misunderstood region of the developing human heart: its significance to the classification of congenital malformations. birth defects 1978; XIV,7: 128.Google Scholar
34.De la Cruz, MV, Sánchez-Gómez, C, Palomino, M. The primitive cardiac regions in the straight tube heart (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 1989;(165): 121131.Google ScholarPubMed
35.Yoshida, H, Manasek, F, Arcilla, RA. Intracardiac flow patterns in early embryonic life. A reexamination. Circ Res 1983; 53: 363371.CrossRefGoogle ScholarPubMed
36.Hogers, B, deRuiter, MC, Baasten, AMJ, Gittenberger-de Groot, AC, Poelmann, RE. Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circ Res 1995; 76(5): 871877.CrossRefGoogle Scholar
37.de Vries, PA, de C.H.Saunder, JB. Development of the ventricles and spiral ourflow tract in the human heart. Contrib Embryol 1962; 37: 87114.Google Scholar
38.Morkin, E. Stimulation of cardiac myosin adenosine triphosphatase in thyrotoxicosis. Circ Res 1979; 44: 17.Google Scholar
39.de Jong, F, Geerts, WJC, Lamers, WH, Los, JA, Moorman, AFM. Isomyosin expression patterns in cubular stages of chicken heart development: a 3-D immunohistochemical analysis. Anat Embryol 1987; 177: 8190.Google Scholar
40.Eisenberg, LM, Markwald, RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 1995; 77: 16.Google Scholar
41.Runyan, RB, Potts, JD, Weeks, DL. TGF-b3-mediated tissue interaction during embryonic heart development. Mol Repr and Dev 1992; 32: 152159.CrossRefGoogle ScholarPubMed
42.Kirby, ML. Cellular and molecular contributions of the cardiac neural crest to cardiovascular development. Trends Cardiovasc. Med. 1993;3(1): 1823.Google Scholar
43.Wessels, A, Vermeulen, JLM, Verbeek, FJ, Virágh, S, Kálmán, F, Lamers, WH, Moorman, AFM. Spatial distribution of “ciissue-specific” antigens in the developing human heart and skeletal muscle: III. An immunohiscochernical analysis of the distribution of the neural tissue antigen GIN2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec 1992; 232: 97111.CrossRefGoogle Scholar
44.van Kempen, MJA, Fromaget, C, Gros, D, Moorman, AFM, Lamers, WH. Spatial distribution of connexin-43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ Res 1991; 68: 16381651.Google Scholar
45.Chan-Thomas, PS, Thompson, RP, Robert, B, Yacoub, MH, Barton, PJR. Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev Dyn 1993; 197: 203216.CrossRefGoogle ScholarPubMed
46.Lamers, WH, Wessels, A, Verbeek, FJ, Moorman, AFM, Virágh, S, Wenink, ACG, Gittenberger-de Groot, AC, Anderson, RH. New findings concerning ventricular septation in the human heart – their implications for maldevelopment. Circulacion 1992; 86: 11941205.CrossRefGoogle ScholarPubMed
47.Asami, I, Koizumi, K.; Clark, EB, Markwald, RR, Takao, A, editors. Developmental Mechanisms of Heart Disease. New York: Furura Publishing Co. 1995; Development of the atrial septal compliex in the human heart: contribution of the spina vestibuli.; 255260.Google Scholar
48.Los, JA. in: Birth defects: articles series. 14th ed. The National Foundation, 1978, 7, Caardiac septation and development of the aorta, pulmonary trunk, and pulmonary veins: previous work in the light of recent observations. 109138.Google Scholar
49.Moorman, AFM, Vermeulen, JLM, Koban, MU, Schwartz, K, Lamers, WH, Boheler, KR. Patterns of expression of sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNAs during rat heart development. Circ Res 1995; 76: 616625.CrossRefGoogle ScholarPubMed
50.Kramer, AW Jr, Marks, LS. The occurrence of cardiac muscle in the pulmonary veins of rodentia. J Morphjol 1965; 117: 135150.Google Scholar
51.Nathan, H, Gloobe, H. Myocardial atrio-venous junctions and extensions (sleeves) over the pulmonary and vaval veins. Thorax 1970; 25: 317324.Google Scholar
52.Wenink, ACG. Development of the human cardiac conduction system. J Anat 1976; 121: 617631.Google Scholar
53.Ikeda, T, Iwasaki, K, Shimokawa, I, Sakai, H, Ito, H, Matsuo, T. Leu-7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue. Anat Embryol 1990; 182: 553562.CrossRefGoogle Scholar
54.Andrson, RH, Ho, SH. The morphologic substrates for pediatric arrhythmias. Cardiology in the Young 1991; 1: 159176.CrossRefGoogle Scholar
55.Mikawa, T, Gourdie, RG. Pericardial Mesoderm Generates a Population of Coronary Smooth Muscle Cells Migerating into the Heart along with Ingrowth of the Epicardial Organ. Dev Biol 1996; 174(68): 221232.CrossRefGoogle ScholarPubMed