Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T23:05:25.676Z Has data issue: false hasContentIssue false

Array comparative genomic hybridisation results of non-syndromic children with the conotruncal heart anomaly

Published online by Cambridge University Press:  20 January 2022

Serdar Mermer*
Affiliation:
Department of Medical Genetics, Republic of Turkey Ministry of Health, Mersin City Training and Research Hospital, Mersin, Turkey
Derya Aydın Şahin
Affiliation:
Department of Pediatric Cardiology, Republic of Turkey Ministry of Health, Mersin City Training and Research Hospital, Mersin, Turkey
*
Author for correspondence: S. Mermer, Department of Medical Genetics, Republic of Turkey Ministry of Health, Mersin City Training and Research Hospital, Mersin, Turkey. Tel: +905334661544; Fax: 90 324 225 10 11. E-mail: [email protected]

Abstract

The study aimed to show the chromosomal copy number variations responsible for the aetiology in patients with isolated conotruncal heart anomaly by array comparative genomic hybridisation and identify candidate genes causing conotruncal heart disease. A total of 37 patients, 17 male, and 20 female, with isolated conotruncal heart anomalies, were included in the study. No findings indicated any syndrome in terms of dysmorphology in the patients.

Results:

Copy number variations were detected in the array comparative genomic hybridisation analysis of five (13.5%) of 37 patients included in the study. Three candidate genes (PRDM16, HIST1H1E, GJA5) found in these deletion and duplication regions may be associated with the conotruncal cardiac anomaly.

Conclusion:

CHDs can be encountered as the first and sometimes the single finding of many genetic disorders in children. It is thought that genetic tests, especially array comparative genomic hybridisation, may be beneficial for children with CHD since the diagnosis of genetic diseases in these patients as early as possible will help to prevent or reduce complications that may develop in the future. Also, it would be possible to detect candidate genes responsible for conotruncal cardiac anomalies with array comparative genomic hybridisation.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Serdar Mermer and Derya Aydın Şahin contributed equally to this work.

References

Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.10.1016/S0735-1097(02)01886-7CrossRefGoogle ScholarPubMed
Dray, EM, Marelli, AJ. Adult congenital heart disease: scope of the problem. Cardiol Clin 2015; 33: 503512.10.1016/j.ccl.2015.07.001CrossRefGoogle Scholar
Ito, S, Chapman, KA, Kisling, M, John, AS. Appropriate use of genetic testing in congenital heart disease patients. Curr Cardiol Rep 2017; 19: 24.CrossRefGoogle ScholarPubMed
Van Der Bom, T, Zomer, AC, Zwinderman, AH, Meijboom, FJ, Bouma, BJ, Mulder, BJ. The changing epidemiology of congenital heart disease. Nat Rev Cardiol 2011; 8: 5060.10.1038/nrcardio.2010.166CrossRefGoogle ScholarPubMed
van Karnebeek, CD, Hennekam, RC. Associations between chromosomal anomalies and congenital heart defects: a database search. Am J Med Genet 1999; 84: 158166.10.1002/(SICI)1096-8628(19990521)84:2<158::AID-AJMG13>3.0.CO;2-53.0.CO;2-5>CrossRefGoogle ScholarPubMed
Erdogan, F, Larsen, LA, Zhang, L, et al. High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet 2008; 45: 704709.CrossRefGoogle ScholarPubMed
Choi, BG, Hwang, S-K, Kwon, JE, Kim, YH. Array comparative genomic hybridization as the first-line investigation for neonates with congenital heart disease: experience in a single tertiary center. Korean Circ J 2018; 48: 209216.CrossRefGoogle Scholar
Mital, S, Musunuru, K, Garg, V, et al. Enhancing literacy in cardiovascular genetics: a scientific statement from the American Heart Association. Circulation: Cardiovascular Genetics 2016; 9: 448467.Google ScholarPubMed
Richards, A, Garg, V. Genetics of congenital heart disease. Curr Cardiol Rev 2010; 6: 9197.CrossRefGoogle ScholarPubMed
Bachman, KK, DeWard, SJ, Chrysostomou, C, Munoz, R, Madan-Khetarpal, S. Array CGH as a first-tier test for neonates with congenital heart disease. Cardiol Young 2015; 25: 115122.CrossRefGoogle ScholarPubMed
Seale, P, Bjork, B, Yang, W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Cah Rev The 2008; 454: 961967.Google Scholar
McDonald-McGinn, DM, Sullivan, KE. Chromosome 22q11. 2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine 2011; 90: 118.10.1097/MD.0b013e3182060469CrossRefGoogle Scholar
McDonald-McGinn, DM, Sullivan, KE, Marino, B, et al. 22q11. 2 deletion syndrome. Nat Rev Dis Primers 2015; 1: 119.10.1038/nrdp.2015.71CrossRefGoogle ScholarPubMed
Yeoh, TY, Scavonetto, F, Hamlin, RJ, Burkhart, HM, Sprung, J, Weingarten, TN. Perioperative management of patients with DiGeorge syndrome undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2014; 28: 983989.CrossRefGoogle ScholarPubMed
Cuneo, BF, Langman, CB, Ilbawi, MN, Ramakrishnan, V, Cutilletta, A, Driscoll, DA. Latent hypoparathyroidism in children with conotruncal cardiac defects. Circulation 1996; 93: 17021708.10.1161/01.CIR.93.9.1702CrossRefGoogle ScholarPubMed
Flashburg, MH, Dunbar, BS, August, G, Watson, D. Anesthesia for surgery in an infant with DiGeorge syndrome. Anesthesiology 1983; 58: 479480.CrossRefGoogle Scholar
Schaan, B, Huber, J, Leite, JCL, Kiss, A. Cardiac surgery unmasks latent hypoparathyroidism in a child with the 22q11. 2 deletion syndrome. J Pediatr Endocrinol Metab 2006; 19: 943946.CrossRefGoogle Scholar
V.P.Singh, RA, Sanyal, S, Waghray, MR, Luthra, ML, Borcar, JM. Anesthesia for DiGeorge’s syndrome. J Cardiothorac Vasc Anesth 1997; 11: 811.10.1016/S1053-0770(97)90198-1CrossRefGoogle Scholar
Kao, A, Mariani, J, McDonald-McGinn, DM, et al. Increased prevalence of unprovoked seizures in patients with a 22q11. 2 deletion. Am J Med Genet A 2004; 129: 2934.CrossRefGoogle Scholar
Perez, E, Sullivan, KE. Chromosome 22q11. 2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr Opin Pediatr 2002; 14: 678683.10.1097/00008480-200212000-00005CrossRefGoogle Scholar
Cuneo, BF. 22q11. 2 deletion syndrome: DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. Curr Opin Pediatr 2001; 13: 465472.CrossRefGoogle ScholarPubMed
Goldmuntz, E. DiGeorge syndrome: new insights. Clin Perinatol 2005; 32: 963978.10.1016/j.clp.2005.09.006CrossRefGoogle ScholarPubMed
Castro, BA. The immunocompromised pediatric patient and surgery. Best Pract Res Clin Anaesthesiol 2008; 22: 611626.CrossRefGoogle ScholarPubMed
Ljungman, P. Risk of cytomegalovirus transmission by blood products to immunocompromised patients and means for reduction. Br J Haematol 2004; 125: 107116.10.1111/j.1365-2141.2004.04845.xCrossRefGoogle ScholarPubMed
Bonnet, C, Andrieux, J, Beri-Dexheimer, M, et al. Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation and absent or severely delayed speech. J Med Genet 2010; 47: 377384.10.1136/jmg.2009.071902CrossRefGoogle ScholarPubMed
Bremer, A, Schoumans, J, Nordenskjöld, M, Anderlid, B-M, Giacobini, M. An interstitial deletion of 7.1 Mb in chromosome band 6p22.3 associated with developmental delay and dysmorphic features including heart defects, short neck, and eye abnormalities. Eur J Med Genet 2009; 52: 358362.CrossRefGoogle Scholar
Burkardt, DDC, Zachariou, A, Loveday, C, et al. HIST1H1E heterozygous protein-truncating variants cause a recognizable syndrome with intellectual disability and distinctive facial gestalt: a study to clarify the HIST1H1E syndrome phenotype in 30 individuals. Am J Med Genet A 2019; 179: 20492055.CrossRefGoogle Scholar
Mefford, HC, Sharp, AJ, Baker, C, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008; 359: 16851699.CrossRefGoogle ScholarPubMed
Walsh, T, McClellan, JM, McCarthy, SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539543.10.1126/science.1155174CrossRefGoogle Scholar
Jansen, JA, van Veen, TA, de Bakker, JM, van Rijen, HV. Cardiac connexins and impulse propagation. J Mol Cell Cardiol 2010; 48: 7682.CrossRefGoogle ScholarPubMed
Vozzi, C, Dupont, E, Coppen, SR, Yeh, H-I, Severs, NJ. Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 1999; 31: 9911003.10.1006/jmcc.1999.0937CrossRefGoogle ScholarPubMed
Firouzi, M, Ramanna, H, Kok, B, et al. Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ Res 2004; 95: e29e33.CrossRefGoogle ScholarPubMed
Groenewegen, WA, Firouzi, M, Bezzina, CR, et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 2003; 92: 1422.CrossRefGoogle ScholarPubMed
Juang, J-M, Chern, Y-R, Tsai, C-T, et al. The association of human connexin 40 genetic polymorphisms with atrial fibrillation. Int J Cardiol 2007; 116: 107112.CrossRefGoogle ScholarPubMed
Gu, H, Smith, FC, Taffet, SM, Delmar, M. High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 2003; 93: 201206.CrossRefGoogle ScholarPubMed
Brunet, A, Armengol, L, Heine, D, et al. BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21. 1. BMC Med Genet 2009; 10: 110.10.1186/1471-2350-10-144CrossRefGoogle ScholarPubMed
Klopocki, E, Schulze, H, Strauß, G, et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 2007; 80: 232240.10.1086/510919CrossRefGoogle ScholarPubMed
Maulik, PK, Mascarenhas, MN, Mathers, CD, Dua, T, Saxena, S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 2011; 32: 419436.CrossRefGoogle ScholarPubMed
Sherr, EH, Michelson, DJ, Shevell, MI, Moeschler, JB, Gropman, AL, Ashwal, S. Neurodevelopmental disorders and genetic testing: current approaches and future advances. Ann Neurol 2013; 74: 164170.Google ScholarPubMed
Jacob, US, Olisaemeka, AN, Edozie, IS. Developmental and communication disorders in children with intellectual disability: the place early intervention for effective inclusion. J Educ Pract 2015; 6: 4246.Google Scholar
Riehle-Colarusso, T, Autry, A, Razzaghi, H, et al. Congenital heart defects and receipt of special education services. Pediatrics 2015; 136: 496504.10.1542/peds.2015-0259CrossRefGoogle ScholarPubMed