Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-21T20:16:35.150Z Has data issue: false hasContentIssue false

Anthracycline-related acute cardiotoxicity in a very young Omani patient with acute myeloid leukaemia

Published online by Cambridge University Press:  24 November 2020

Surekha Tony*
Affiliation:
Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
Roshan Mevada
Affiliation:
Final year MBBS, Father Muller Medical College, Mangalore, India
Niranjan Joshi
Affiliation:
Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
*
Author for correspondence: Dr S. Tony MD, Department of Child Health, Sultan Qaboos University Hospital, Muscat PO 38 PC 123, Oman. Tel: 0096895886297; Fax: 00968 24796165. E-mail: [email protected]

Abstract

Anthracycline-related cardiomyopathy is of concern in children treated for acute myeloid leukemia (AML). Risk is dose-dependent, increasing with higher doses. We aim to highlight the risk of early-onset cardiotoxicity with low-cumulative anthracycline dose in a young Omani boy with AML. We conclude in the presence of other known risk factors for cardiac dysfunction, there is probably no risk-free anthracycline dose.

Type
Brief Report
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Temming, P, Qureshi, A, Hardt, J, et al. Prevalence and predictors of anthracycline cardiotoxicity in children treated for acute myeloid leukaemia: retrospective cohort study in a single centre in the United Kingdom. Pediatr Blood Cancer 2011; 56: 625630.10.1002/pbc.22908CrossRefGoogle Scholar
McGowan, JV, Chung, R, Maulik, A, et al. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 2017; 31: 6375.10.1007/s10557-016-6711-0CrossRefGoogle ScholarPubMed
Cardinale, D, Colombo, A, Lamantia, G, et al. Anthracycline induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010; 55: 213220.10.1016/j.jacc.2009.03.095CrossRefGoogle ScholarPubMed
Zhang, S, Liu, X, Bawa-Khalfe, T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 2012; 18: 16391642.10.1038/nm.2919CrossRefGoogle ScholarPubMed
Huang, C, Zhang, X, Ramil, JM, et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 2010; 121: 675683.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Lipsitz, SR, Sallan, SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 26292636.CrossRefGoogle ScholarPubMed
Sadurska, E. Current views on anthracycline cardiotoxicity in childhood cancer survivors. Pediatr Cardiol 2015; 36: 11121119.10.1007/s00246-015-1176-7CrossRefGoogle ScholarPubMed
Fraschini, D, Galbiati, M, Capra, AC, et al. Low anthracyclines doses induced cardiotoxicity in acute lymphoblastic leukemia long term female survivors. Pediatr Blood Cancer 2010; 55: 13431347.Google Scholar
Kremer, LC, van der Pal, HJ, Offringa, M, et al. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. An Oncol. 2002; 13: 819829.CrossRefGoogle ScholarPubMed
Chow, EJ, Leger, KJ, Bhatt, NS, et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment. Cardiovascular Res 2019; 115: 922934.CrossRefGoogle Scholar
Chow, EJ, Antal, Z, Constine, LS, Gardner, R, et al. New agents, emerging late effects, and the development of precision survivorship. J Clin Oncol 2018; 36: 22312240.CrossRefGoogle ScholarPubMed
Blanco, JG, Sun, CL, Landier Chen, L, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the children’s oncology group. J Clin Oncol 2012; 30: 14151421.CrossRefGoogle ScholarPubMed
Rathe, M, Carlsen, NLT, Oxhøj, H, et al. Long term cardiac follow-up of children treated with anthracycline doses of 300 mg/m or less for acute lymphoblastic leukemia. Pediatr Blood Cancer 2010; 54: 444448.CrossRefGoogle ScholarPubMed
Fulbright, JM. Review of cardiotoxicity in pediatric cancer patients: during and after therapy. Cardiol Res Pract 2011; 2011: 942090 CrossRefGoogle ScholarPubMed
Vyskočil, J, Petráková, K, Jelínek, P, et al. Cardiovascular complications of cancers and anti-cancer therapy. Vnitr Lek 2017; 63: 200209.Google ScholarPubMed
Hildebrandt, MAT, Monica, R, Wu, X, et al. Hypertension susceptibility loci are associated with anthracycline-related cardiotoxicity in long-term childhood cancer survivors. Sci Rep 2017; 7: 9698.10.1038/s41598-017-09517-2CrossRefGoogle ScholarPubMed
Malik, IA, Cardenas-Turanzas, M, Gaeta, S, et al. Sepsis and acute myeloid leukemia: a population-level study of comparative outcomes of patients discharged from Texas hospitals. Clin Lymphoma Myeloma Leuk 2017; 17: e27e32.CrossRefGoogle ScholarPubMed
Vallabhajosyula, S, Jentzer, JC, Geske, JB, et al. New-onset heart failure and mortality in hospital survivors of sepsis-related left ventricular dysfunction. Shock 2018; 49: 144149.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Miller, TL, Scully, RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol 2012; 30: 10421049.10.1200/JCO.2010.30.3404CrossRefGoogle ScholarPubMed