Published online by Cambridge University Press: 21 February 2020
Post-operative severe vascular stenosis and proliferating endothelial tissue lead to severe circulatory disorders and impair organ perfusion. Bioabsorbable magnesium scaffolds may help to overcome these obstructions without leaving obstructing stent material. We analyse their role in the treatment of vascular stenosis in infants.
Since 2016, 15 magnesium scaffolds with a diameter of 3.5 mm were implanted in 9 patients aged 15 days to 7.6 years. Eight scaffolds were implanted in pulmonary venous restenoses, five in pulmonary arterial stenosis including one in-stent stenosis, one into a stenotic brachiocephalic artery, and one in a recurrent innominate vein thrombosis.
All patients clinically improved after the implantation of a scaffold. The magnesium scaffolds lost integrity after 30–48 days (mean 42 days). The innominate vein thrombosed early, while all other vessels remained open. Two patients died after 1.3 and 14 weeks not related to the scaffolds. Five patients needed further balloon dilations or stent implantations after the scaffold had fractured. At first recatheterisation after in mean 2.5 months, the mean minimum/maximum diameter in relation to the scaffold’s original diameter was 89%/99% in the arterial implantations (n = 6) and 66%/77% in the pulmonary venous implantations.
The magnesium scaffolds can be used as a bridging solution to treat severe vascular stenosis in different locations. Restenosis can occur after degradation and make further interventions necessary, but neither vessel growth nor further interventions are hindered by stent material. Larger diameters may improve therapeutic options.