Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T14:09:19.752Z Has data issue: false hasContentIssue false

A systematic review of the evidence supporting post-operative medication use in congenital heart disease

Published online by Cambridge University Press:  19 April 2021

Elizabeth J. Thompson
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
Henry P. Foote
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
Caitlin E. King
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
Sabarish Srinivasan
Affiliation:
Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
Elizabeth C. Ciociola
Affiliation:
Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
Dennis Leung
Affiliation:
Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Alexandre T. Rotta
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
Kevin D. Hill
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
Michael Cohen-Wolkowiez
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
Christoph P. Hornik*
Affiliation:
Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
*
Author for correspondence: Dr C. P. Hornik, MD, PhD, MPH, Department of Pediatrics and Duke Clinical Research Institute, Duke University School of Medicine, PO Box 17969, Durham, NC 27715, USA. Tel: +1 919 684 8111; Fax: 919 681 9457. E-mail: [email protected]

Abstract

Background:

Targeted drug development efforts in patients with CHD are needed to standardise care, improve outcomes, and limit adverse events in the post-operative period. To identify major gaps in knowledge that can be addressed by drug development efforts and provide a rationale for current clinical practice, this review evaluates the evidence behind the most common medication classes used in the post-operative care of children with CHD undergoing cardiac surgery with cardiopulmonary bypass.

Methods:

We systematically searched PubMed and EMBASE from 2000 to 2019 using a controlled vocabulary and keywords related to diuretics, vasoactives, sedatives, analgesics, pulmonary vasodilators, coagulation system medications, antiarrhythmics, steroids, and other endocrine drugs. We included studies of drugs given post-operatively to children with CHD undergoing repair or palliation with cardiopulmonary bypass.

Results:

We identified a total of 127 studies with 51,573 total children across medication classes. Most studies were retrospective cohorts at single centres. There is significant age- and disease-related variability in drug disposition, efficacy, and safety.

Conclusion:

In this study, we discovered major gaps in knowledge for each medication class and identified areas for future research. Advances in data collection through electronic health records, novel trial methods, and collaboration can aid drug development efforts in standardising care, improving outcomes, and limiting adverse events in the post-operative period.

Type
Review
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Visiting high school student at Duke Clinical Research Institute, Durham, NC, USA.

References

Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.CrossRefGoogle ScholarPubMed
Hoffman, JI, Kaplan, S, Liberthson, RR. Prevalence of congenital heart disease. Am Heart J 2004; 147: 425439.CrossRefGoogle ScholarPubMed
Erikssen, G, Liestol, K, Seem, E, et al. Achievements in congenital heart defect surgery: a prospective, 40-year study of 7038 patients. Circulation 2015; 131: 337346.CrossRefGoogle ScholarPubMed
Jacobs, JP, He, X, Mayer, JE Jr, et al. Mortality trends in pediatric and congenital heart surgery: an analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg 2016; 102: 13451352.CrossRefGoogle Scholar
Tweddell, JS, Hoffman, GM. Postoperative management in patients with complex congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2002; 5: 187205.CrossRefGoogle ScholarPubMed
Burstein, DS, Rossi, AF, Jacobs, JP, et al. Variation in models of care delivery for children undergoing congenital heart surgery in the United States. World J Pediatr Congenit Heart Surg 2010; 1: 814.CrossRefGoogle ScholarPubMed
Tabbutt, S, Schuette, J, Zhang, W, et al. A novel model demonstrates variation in risk-adjusted mortality across pediatric cardiac ICUs after surgery. Pediatr Crit Care Med 2019; 20: 136142.CrossRefGoogle ScholarPubMed
Pasquali, SK, Li, JS, Burstein, DS, et al. Association of center volume with mortality and complications in pediatric heart surgery. Pediatrics 2012; 129: e370e376.CrossRefGoogle ScholarPubMed
Torok, RD, Li, JS, Kannankeril, PJ, et al. Recommendations to enhance pediatric cardiovascular drug development: report of a multi-stakeholder think tank. J Am Heart Assoc 2018; 7: e007283.CrossRefGoogle ScholarPubMed
Pasquali, SK, Ohye, RG, Lu, M, et al. Variation in perioperative care across centers for infants undergoing the Norwood procedure. J Thorac Cardiovasc Surg 2012; 144: 915921.CrossRefGoogle ScholarPubMed
Bronicki, RA, Chang, AC. Management of the postoperative pediatric cardiac surgical patient. Crit Care Med 2011; 39: 19741984.CrossRefGoogle ScholarPubMed
Beke, DM, Braudis, NJ, Lincoln, P. Management of the pediatric postoperative cardiac surgery patient. Crit Care Nurs Clin North Am 2005; 17: 405416.CrossRefGoogle ScholarPubMed
Milojevic, M, Pisano, A, Sousa-Uva, M, Landoni, G. Perioperative medication management in adult cardiac surgery: the 2017 European Association for Cardio-Thoracic Surgery Guidelines. J Cardiothorac Vasc Anesth 2019; 33: 304306.CrossRefGoogle ScholarPubMed
Li, JS, Cohen-Wolkowiez, M, Pasquali, SK. Pediatric cardiovascular drug trials, lessons learned. J Cardiovasc Pharmacol 2011; 58: 48.CrossRefGoogle ScholarPubMed
Turner, S, Nunn, AJ, Fielding, K, Choonara, I. Adverse drug reactions to unlicensed and off-label drugs on paediatric wards: a prospective study. Acta Paediatr 1999; 88: 965968.CrossRefGoogle ScholarPubMed
Neubert, A, Dormann, H, Weiss, J, et al. The impact of unlicensed and off-label drug use on adverse drug reactions in paediatric patients. Drug Saf 2004; 27: 10591067.CrossRefGoogle ScholarPubMed
Conroy, S. Association between licence status and medication errors. Arch Dis Childhood 2011; 96: 305306.CrossRefGoogle ScholarPubMed
Zimmerman, K, Gonzalez, D, Swamy, GK, Cohen-Wolkowiez, M. Pharmacologic studies in vulnerable populations: using the pediatric experience. Semin Perinatol 2015; 39: 532536.CrossRefGoogle ScholarPubMed
Li, JS, Colan, SD, Sleeper, LA, et al. Lessons learned from a pediatric clinical trial: the Pediatric Heart Network angiotensin-converting enzyme inhibition in mitral regurgitation study. Am Heart J 2011; 161: 233240.CrossRefGoogle ScholarPubMed
Field, MJ, Boat, TF, Committee on Pediatric Studies Conducted Under the Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA), Board on Health Sciences Policy, Institute of Medicine. Safe and Effective Medicines for Children: Pediatric Studies Conducted Under the Best Pharmaceuticals for Children Act and the Pediatric Research Equity Act. National Academies Press (US), Washington, DC, 2012.Google Scholar
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. Submitting Documents Using Real-World Data and Real-World Evidence to FDA for Drugs and Biologics: Guidance for Industry [Draft Guidance], 2019. Retrieved October, 2020, from https://www.fda.gov/media/124795/download.Google Scholar
McMahon, AW, Dal Pan, G. Assessing drug safety in children - the role of real-world data. N Engl J Med 2018; 378: 21552157.CrossRefGoogle ScholarPubMed
Gidding, SS. The importance of randomized controlled trials in pediatric cardiology. JAMA. 2007; 298: 12141216.CrossRefGoogle ScholarPubMed
Lasky, T, Carleton, B, Horton, DB, et al. Real-world evidence to assess medication safety or effectiveness in children: systematic review. Drugs Real World Outcomes 2020; 7: 97107.CrossRefGoogle ScholarPubMed
van der Vorst, MM, van Heel, IR-D, Kist-van Holthe, JE, et al. Continuous intravenous furosemide in haemodynamically unstable children after cardiac surgery. Intensive Care Med 2001; 27: 711715.CrossRefGoogle ScholarPubMed
Borasino, S, Wall, KM, Crawford, JH, et al. Furosemide response predicts acute kidney injury after cardiac surgery in infants and neonates. Pediatr Crit Care Med 2018; 19: 310317.CrossRefGoogle ScholarPubMed
Ricci, Z, Haiberger, R, Pezzella, C, Garisto, C, Favia, I, Cogo, P. Furosemide versus ethacrynic acid in pediatric patients undergoing cardiac surgery: a randomized controlled trial. Crit Care 2015; 19: 2.CrossRefGoogle ScholarPubMed
Haiberger, R, Favia, I, Romagnoli, S, Cogo, P, Ricci, Z. Clinical factors associated with dose of loop diuretics after pediatric cardiac surgery: post hoc analysis. Pediatr Cardiol 2016; 37: 913918.CrossRefGoogle ScholarPubMed
Onder, AM, Rosen, D, Mullett, C, et al. Comparison of intraoperative aminophylline versus furosemide in treatment of oliguria during pediatric cardiac surgery. Pediatr Crit Care Med 2016; 17: 753763.CrossRefGoogle ScholarPubMed
Kwiatkowski, DM, Goldstein, SL, Cooper, DS, Nelson, DP, Morales, DL, Krawczeski, CD. Peritoneal dialysis versus furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr 2017; 171: 357364.CrossRefGoogle Scholar
Katayama, Y, Ozawa, T, Shiono, N, Masuhara, H, Fujii, T, Watanabe, Y. Safety and effectiveness of tolvaptan for fluid management after pediatric cardiovascular surgery. Gen Thorac Cardiovasc Surg 2017; 65: 622626.CrossRefGoogle ScholarPubMed
Kerling, A, Toka, O, Rüffer, A, et al. First experience with tolvaptan for the treatment of neonates and infants with capillary leak syndrome after cardiac surgery. BMC Pediatr 2019; 19: 57.CrossRefGoogle ScholarPubMed
Lopez, C, Alcaraz, AJ, Toledo, B, Cortejoso, L, Gil-Ruiz, MA. Acetazolamide therapy for metabolic alkalosis in pediatric intensive care patients. Pediatr Crit Care Med 2016; 17: e551e558.CrossRefGoogle ScholarPubMed
Agrawal, A, Singh, VK, Varma, A, Sharma, R. Intravenous arginine vasopressin infusion in refractory vasodilatory shock: a clinical study. Indian J Pediatr 2012; 79: 488493.CrossRefGoogle ScholarPubMed
Alten, JA, Borasino, S, Toms, R, Law, MA, Moellinger, A, Dabal, RJ. Early initiation of arginine vasopressin infusion in neonates after complex cardiac surgery. Pediatr Crit Care Med 2012; 13: 300304.CrossRefGoogle ScholarPubMed
Burton, GL, Kaufman, J, Goot, BH, da Cruz, EM. The use of Arginine vasopressin in neonates following the Norwood procedure. Cardiol Young 2011; 21: 536544.CrossRefGoogle ScholarPubMed
Davalos, MC, Barrett, R, Seshadri, S, et al. Hyponatremia during arginine vasopressin therapy in children following cardiac surgery. Pediatr Crit Care Med 2013; 14: 290297.CrossRefGoogle ScholarPubMed
Lechner, E, Hofer, A, Mair, R, Moosbauer, W, Sames-Dolzer, E, Tulzer, G. Arginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. Eur J Pediatr 2007; 166: 12211227.CrossRefGoogle ScholarPubMed
Lu, Z, Wang, X, Yang, J, Li, S, Yan, J. Vasopressin in vasodilatory shock for both left and right heart anomalous pediatric patients after cardiac surgery. Shock 2018; 50: 173177.CrossRefGoogle ScholarPubMed
Mastropietro, CW, Davalos, MC, Seshadri, S, Walters, HL rd, Delius, RE. Clinical response to arginine vasopressin therapy after paediatric cardiac surgery. Cardiol Young 2013; 23: 387393.CrossRefGoogle ScholarPubMed
Barnwal, NK, Umbarkar, SR, Sarkar, MS, Dias, RJ. Randomized comparative study of intravenous infusion of three different fixed doses of milrinone in pediatric patients with pulmonary hypertension undergoing open heart surgery. Ann Card Anaesth 2017; 20: 318322.CrossRefGoogle ScholarPubMed
Chu, CC, Lin, SM, New, SH, et al. Effect of milrinone on postbypass pulmonary hypertension in children after tetralogy of Fallot repair. Zhonghua Yi Xue Za Zhi 2000; 63: 294300.Google ScholarPubMed
Duggal, B, Pratap, U, Slavik, Z, Kaplanova, J, Macrae, D. Milrinone and low cardiac output following cardiac surgery in infants: is there a direct myocardial effect? Pediatr Cardiol 2005; 26: 642645.CrossRefGoogle Scholar
Garcia Guerra, G, Joffe, AR, Senthilselvan, A, Kutsogiannis, DJ, Parshuram, CS. Incidence of milrinone blood levels outside the therapeutic range and their relevance in children after cardiac surgery for congenital heart disease. Intensive Care Med 2013; 39: 951957.CrossRefGoogle ScholarPubMed
Hoffman, TM, Wernovsky, G, Atz, AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 2003; 107: 9961002.CrossRefGoogle ScholarPubMed
Cavigelli-Brunner, A, Hug, MI, Dave, H, et al. Prevention of low cardiac output syndrome after pediatric cardiac surgery: a double-blind randomized clinical pilot study comparing dobutamine and milrinone. Pediatr Crit Care Med 2018; 19: 619625.CrossRefGoogle ScholarPubMed
de Souza, RL, de Carvalho, WB, Maluf, MA, Carvalho, AC. Assessment of splanchnic perfusion with gastric tonometry in the immediate postoperative period of cardiac surgery in children. Arq Bras Cardiol 2001; 77: 509519.CrossRefGoogle ScholarPubMed
Costello, JM, Dunbar-Masterson, C, Allan, CK, et al. Impact of empiric nesiritide or milrinone infusion on early postoperative recovery after Fontan surgery: a randomized, double-blind, placebo-controlled trial. Circ Heart Fail 2014; 7: 596604.CrossRefGoogle ScholarPubMed
Simsic, JM, Scheurer, M, Tobias, JD, et al. Perioperative effects and safety of nesiritide following cardiac surgery in children. J Intensive Care Med 2006; 21: 2226.CrossRefGoogle ScholarPubMed
Moffett, BS, Price, JF. Evaluation of sodium nitroprusside toxicity in pediatric cardiac surgical patients. Ann Pharmacother 2008; 42: 16001604.CrossRefGoogle ScholarPubMed
Ebade, AA, Khalil, MA, Mohamed, AK. Levosimendan is superior to dobutamine as an inodilator in the treatment of pulmonary hypertension for children undergoing cardiac surgery. J Anesth 2013; 27: 334339.CrossRefGoogle ScholarPubMed
Lechner, E, Hofer, A, Leitner-Peneder, G, et al. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Pediatr Crit Care Med 2012; 13: 542548.CrossRefGoogle ScholarPubMed
Momeni, M, Rubay, J, Matta, A, et al. Levosimendan in congenital cardiac surgery: a randomized, double-blind clinical trial. J Cardiothorac Vasc Anesth 2011; 25: 419424.CrossRefGoogle ScholarPubMed
Pellicer, A, Riera, J, Lopez-Ortego, P, et al. Phase 1 study of two inodilators in neonates undergoing cardiovascular surgery. Pediatr Res 2013; 73: 95103.CrossRefGoogle ScholarPubMed
Amiet, V, Perez, MH, Longchamp, D, et al. Use of levosimendan in postoperative setting after surgical repair of congenital heart disease in children. Pediatr Cardiol 2018; 39: 1925.CrossRefGoogle ScholarPubMed
Osthaus, WA, Boethig, D, Winterhalter, M, et al. First experiences with intraoperative levosimendan in pediatric cardiac surgery. Eur J Pediatr 2009; 168: 735740.CrossRefGoogle ScholarPubMed
Ricci, Z, Garisto, C, Favia, I, Vitale, V, Di Chiara, L, Cogo, PE. Levosimendan infusion in newborns after corrective surgery for congenital heart disease: randomized controlled trial. Intensive Care Med 2012; 38: 11981204.CrossRefGoogle ScholarPubMed
Thorlacius, EM, Suominen, PK, Wåhlander, H, et al. The effect of levosimendan versus milrinone on the occurrence rate of acute kidney injury following congenital heart surgery in infants: a randomized clinical trial. Pediatr Crit Care Med 2019; 20: 947956.CrossRefGoogle ScholarPubMed
Wang, A, Cui, C, Fan, Y, et al. Prophylactic use of levosimendan in pediatric patients undergoing cardiac surgery: a prospective randomized controlled trial. Crit Care 2019; 23: 428.CrossRefGoogle ScholarPubMed
McFerson, MC, McCanta, AC, Pan, Z, et al. Tachyarrhythmias after the Norwood procedure: relationship and effect of vasoactive agents. Pediatr Cardiol 2014; 35: 668675.CrossRefGoogle ScholarPubMed
Watarida, S, Shiraishi, S, Sugita, T, et al. Effects of docarpamine on hemodynamics after open heart surgery in children. Ann Thorac Cardiovasc Surg 2000; 6: 106109.Google ScholarPubMed
Stone, ML, Kelly, J, Mistry, M, Buck, M, Gangemi, J, Vergales, J. Use of nicardipine after cardiac operations is safe in children regardless of age. Ann Thorac Surg 2018; 105: 181185.CrossRefGoogle ScholarPubMed
Furck, AK, Hansen, JH, Uebing, A, Scheewe, J, Jung, O, Kramer, HH. The impact of afterload reduction on the early postoperative course after the Norwood operation - a 12-year single-centre experience. Eur J Cardiothorac Surg 2010; 37: 289295.Google ScholarPubMed
De Oliveira, NC, Ashburn, DA, Khalid, F, et al. Prevention of early sudden circulatory collapse after the Norwood operation. Circulation 2004; 110: Iil33–Ii138.CrossRefGoogle ScholarPubMed
Chrysostomou, C, Sanchez De Toledo, J, Avolio, T, et al. Dexmedetomidine use in a pediatric cardiac intensive care unit: can we use it in infants after cardiac surgery? Pediatr Crit Care Med 2009; 10: 654660.CrossRefGoogle Scholar
Garisto, C, Ricci, Z, Tofani, L, Benegni, S, Pezzella, C, Cogo, P. Use of low-dose dexmedetomidine in combination with opioids and midazolam in pediatric cardiac surgical patients: randomized controlled trial. Minerva Anestesiol 2018; 84: 10531062.CrossRefGoogle ScholarPubMed
Hasegawa, T, Oshima, Y, Maruo, A, et al. Dexmedetomidine in combination with midazolam after pediatric cardiac surgery. Asian Cardiovasc Thorac Ann 2015; 23: 802808.CrossRefGoogle ScholarPubMed
Horvath, R, Halbrooks, EF, Overman, DM, Friedrichsdorf, SJ. Efficacy and safety of postoperative dexmedetomidine administration in infants and children undergoing cardiac surgery: a retrospective cohort study. J Pediatr Intensive Care 2015; 4: 138145.Google ScholarPubMed
Hosokawa, K, Shime, N, Kato, Y, et al. Dexmedetomidine sedation in children after cardiac surgery. Pediatr Crit Care Med 2010; 11: 3943.CrossRefGoogle ScholarPubMed
Kleiber, N, de Wildt, SN, Cortina, G, et al. Clonidine as a first-line sedative agent after neonatal cardiac surgery: retrospective cohort study. Pediatr Crit Care Med 2016; 17: 332341.CrossRefGoogle ScholarPubMed
Potts, AL, Anderson, BJ, Holford, NH, Vu, TC, Warman, GR. Dexmedetomidine hemodynamics in children after cardiac surgery. Paediatr Anaesth 2010; 20: 425433.CrossRefGoogle ScholarPubMed
Prasad, SR, Simha, PP, Jagadeesh, AM. Comparative study between dexmedetomidine and fentanyl for sedation during mechanical ventilation in post-operative paediatric cardiac surgical patients. Indian J Anaesth 2012; 56: 547552.CrossRefGoogle ScholarPubMed
Su, F, Nicolson, SC, Zuppa, AF. A dose-response study of dexmedetomidine administered as the primary sedative in infants following open heart surgery. Pediatr Crit Care Med 2013; 14: 499507.CrossRefGoogle ScholarPubMed
Tokuhira, N, Atagi, K, Shimaoka, H, Ujiro, A, Otsuka, Y, Ramsay, M. Dexmedetomidine sedation for pediatric post-Fontan procedure patients. Pediatr Crit Care Med 2009; 10: 207212.CrossRefGoogle ScholarPubMed
Kleiber, N, de Wildt, SN, Cortina, G, et al. A comparative analysis of preemptive versus targeted sedation on cardiovascular stability after high-risk cardiac surgery in infants. Pediatr Crit Care Med 2016; 17: 321331.CrossRefGoogle ScholarPubMed
Penk, JS, Lefaiver, CA, Brady, CM, Steffensen, CM, Wittmayer, K. Intermittent versus continuous and intermittent medications for pain and sedation after pediatric cardiothoracic surgery; a randomized controlled trial. Crit Care Med 2018; 46: 123129.CrossRefGoogle ScholarPubMed
Rigby-Jones, AE, Priston, MJ, Sneyd, JR, et al. Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Br J Anaesth 2007; 99: 252261.CrossRefGoogle ScholarPubMed
Chrysostomou, C, Beerman, L, Shiderly, D, Berry, D, Morell, VO, Munoz, R. Dexmedetomidine: a novel drug for the treatment of atrial and junctional tachyarrhythmias during the perioperative period for congenital cardiac surgery: a preliminary study. Anesth Analg 2008; 107: 15141522.CrossRefGoogle ScholarPubMed
Andropoulos, DB, Ahmad, HB, Haq, T, et al. The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: a retrospective cohort study. Paediatr Anaesth 2014; 24: 266274.CrossRefGoogle ScholarPubMed
Bueno, M, Kimura, AF, Pimenta, CA. Pharmacological analgesia in neonates undergoing cardiac surgery. Rev Lat Am Enfermagem 2008; 16: 727732.CrossRefGoogle ScholarPubMed
Elkomy, MH, Drover, DR, Galinkin, JL, Hammer, GB, Glotzbach, KL. Pharmacodynamic analysis of morphine time-to-remedication events in infants and young children after congenital heart surgery. Clin Pharmacokinet 2016; 55: 12171226.CrossRefGoogle ScholarPubMed
Iodice, FG, Thomas, M, Walker, I, Garside, V, Elliott, MJ. Analgesia in fast-track paediatric cardiac patients. Eur J Cardiothorac Surg 2011; 40: 610613.Google ScholarPubMed
Naguib, AN, Dewhirst, E, Winch, PD, Simsic, J, Galantowicz, M, Tobias, JD. Pain management after surgery for single-ventricle palliation using the hybrid approach. Pediatr Cardiol 2012; 33: 11041108.CrossRefGoogle ScholarPubMed
Naguib, AN, Dewhirst, E, Winch, PD, Simsic, J, Galantowicz, M, Tobias, JD. Pain management after comprehensive stage 2 repair for hypoplastic left heart syndrome. Pediatr Cardiol 2013; 34: 5258.CrossRefGoogle ScholarPubMed
Valkenburg, AJ, Calvier, EA, van Dijk, M, et al. Pharmacodynamics and pharmacokinetics of morphine after cardiac surgery in children with and without down syndrome. Pediatr Crit Care Med 2016; 17: 930938.CrossRefGoogle ScholarPubMed
Van Driest, SL, Shah, A, Marshall, MD, et al. Opioid use after cardiac surgery in children with Down syndrome. Pediatr Crit Care Med 2013; 14: 862868.CrossRefGoogle ScholarPubMed
Xiang, K, Cai, H, Song, Z. Comparison of analgesic effects of remifentanil and fentanyl NCA after pediatric cardiac surgery. J Invest Surg 2014; 27: 214218.CrossRefGoogle ScholarPubMed
Dawkins, TN, Barclay, CA, Gardiner, RL, Krawczeski, CD. Safety of intravenous use of ketorolac in infants following cardiothoracic surgery. Cardiol Young 2009; 19: 105108.CrossRefGoogle ScholarPubMed
Gupta, A, Daggett, C, Drant, S, Rivero, N, Lewis, A. Prospective randomized trial of ketorolac after congenital heart surgery. J Cardiothorac Vasc Anesth 2004; 18: 454457.CrossRefGoogle ScholarPubMed
Kim, JS, Kaufman, J, Patel, SS, Manco-Johnson, M, Di Paola, J, da Cruz, EM. Antiplatelet effect of ketorolac in children after congenital cardiac surgery. World J Pediatr Congenit Heart Surg 2018; 9: 651658.CrossRefGoogle ScholarPubMed
Moffett, BS, Cabrera, A. Ketorolac-associated renal morbidity: risk factors in cardiac surgical infants. Cardiol Young 2013; 23: 752754.CrossRefGoogle ScholarPubMed
Moffett, BS, Wann, TI, Carberry, KE, Mott, AR. Safety of ketorolac in neonates and infants after cardiac surgery. Paediatr Anaesth 2006; 16: 424428.CrossRefGoogle ScholarPubMed
Van Driest, SL, Jooste, EH, Shi, Y, et al. Association between early postoperative acetaminophen exposure and acute kidney injury in pediatric patients undergoing cardiac surgery. JAMA Pediatr 2018; 172: 655663.CrossRefGoogle ScholarPubMed
Amrousy, DE, Elshehaby, W, Feky, WE, Elshmaa, NS. Safety and efficacy of prophylactic amiodarone in preventing early junctional ectopic tachycardia (JET) in children after cardiac surgery and determination of its risk factor. Pediatr Cardiol 2016; 37: 734739.CrossRefGoogle ScholarPubMed
Haas, NA, Camphausen, CK. Acute hemodynamic effects of intravenous amiodarone treatment in paediatric cardiac surgical patients. Clin Res Cardiol 2008; 97: 801810.CrossRefGoogle ScholarPubMed
Imamura, M, Dossey, AM, Garcia, X, Shinkawa, T, Jaquiss, RD. Prophylactic amiodarone reduces junctional ectopic tachycardia after tetralogy of Fallot repair. J Thorac Cardiovasc Surg 2012; 143: 152156.CrossRefGoogle ScholarPubMed
Kovacikova, L, Hakacova, N, Dobos, D, Skrak, P, Zahorec, M. Amiodarone as a first-line therapy for postoperative junctional ectopic tachycardia. Ann Thorac Surg 2009; 88: 616622.CrossRefGoogle ScholarPubMed
Laird, WP, Snyder, CS, Kertesz, NJ, Friedman, RA, Miller, D, Fenrich, AL. Use of intravenous amiodarone for postoperative junctional ectopic tachycardia in children. Pediatr Cardiol 2003; 24: 133137.CrossRefGoogle ScholarPubMed
El-Shmaa, NS, El Amrousy, D, El Feky, W.The efficacy of pre-emptive dexmedetomidine versus amiodarone in preventing postoperative junctional ectopic tachycardia in pediatric cardiac surgery. Ann Card Anaesth 2016; 19: 614620.CrossRefGoogle ScholarPubMed
Bronzetti, G, Formigari, R, Giardini, A, Frascaroli, G, Gargiulo, G, Picchio, FM. Intravenous flecainide for the treatment of junctional ectopic tachycardia after surgery for congenital heart disease. Ann Thorac Surg 2003; 76: 148151.CrossRefGoogle ScholarPubMed
Ortmann, LA, Keshary, M, Bisselou, KS, Kutty, S, Affolter, JT. Association between postoperative dexmedetomidine use and arrhythmias in infants after cardiac surgery. World J Pediatr Congenit Heart Surg 2019; 10: 440445.CrossRefGoogle ScholarPubMed
Shuplock, JM, Smith, AH, Owen, J, et al. Association between perioperative dexmedetomidine and arrhythmias after surgery for congenital heart disease. Circ Arrhythm Electrophysiol 2015; 8: 643650.CrossRefGoogle ScholarPubMed
Miyake, K, Fujita, Y, Yoshizawa, S, et al. Effects of landiolol on refractory tachyarrhythmia after total cavopulmonary connection: a retrospective, observational, cohort study. J Anesth 2016; 30: 331336.CrossRefGoogle ScholarPubMed
Saiki, H, Nakagawa, R, Ishido, H, Masutani, S, Senzaki, H. Landiolol hydrochloride infusion for treatment of junctional ectopic tachycardia in post-operative paediatric patients with congenital heart defect. Europace 2013; 15: 12981303.CrossRefGoogle ScholarPubMed
Tokunaga, C, Hiramatsu, Y, Kanemoto, S, et al. Effects of landiolol hydrochloride on intractable tachyarrhythmia after pediatric cardiac surgery. Ann Thorac Surg 2013; 95: 16851688.CrossRefGoogle ScholarPubMed
Yoneyama, F, Tokunaga, C, Kato, H, et al. Landiolol hydrochloride rapidly controls junctional ectopic tachycardia after pediatric heart surgery. Pediatr Crit Care Med 2018; 19: 713717.CrossRefGoogle ScholarPubMed
Verma, YS, Chauhan, S, Gharde, P, Lakshmy, R, Kiran, U. Role of magnesium in the prevention of postoperative arrhythmias in neonates and infants undergoing arterial switch operation. Interact Cardiovasc Thorac Surg 2010; 11: 573576.CrossRefGoogle ScholarPubMed
Göthberg, S, Edberg, KE. Inhaled nitric oxide to newborns and infants after congenital heart surgery on cardiopulmonary bypass. A dose-response study. Scand Cardiovasc J 2000; 34: 154158.Google ScholarPubMed
Miller, OI, Tang, SF, Keech, A, Pigott, NB, Beller, E, Celermajer, DS. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study. Lancet 2000; 356: 14641469.CrossRefGoogle ScholarPubMed
Morris, K, Beghetti, M, Petros, A, Adatia, I, Bohn, D. Comparison of hyperventilation and inhaled nitric oxide for pulmonary hypertension after repair of congenital heart disease. Crit Care Med 2000; 28: 29742978.CrossRefGoogle ScholarPubMed
Tominaga, Y, Iwai, S, Yamauchi, S, et al. Post-extubation inhaled nitric oxide therapy via high-flow nasal cannula after Fontan procedure. Pediatr Cardiol 2019; 40: 10641071.CrossRefGoogle ScholarPubMed
Wong, J, Loomba, RS, Evey, L, Bronicki, RA, Flores, S. Postoperative inhaled nitric oxide does not decrease length of stay in pediatric cardiac surgery admissions. Pediatr Cardiol 2019; 40: 15591568.CrossRefGoogle Scholar
Journois, D, Baufreton, C, Mauriat, P, Pouard, P, Vouhé, P, Safran, D. Effects of inhaled nitric oxide administration on early postoperative mortality in patients operated for correction of atrioventricular canal defects. Chest 2005; 128: 35373544.CrossRefGoogle ScholarPubMed
Yoshimura, N, Yamaguchi, M, Oka, S, et al. Inhaled nitric oxide therapy after Fontan-type operations. Surg Today 2005; 35: 3135.CrossRefGoogle ScholarPubMed
Agarwal, HS, Churchwell, KB, Doyle, TP, et al. Inhaled nitric oxide use in bidirectional Glenn anastomosis for elevated Glenn pressures. Ann Thorac Surg 2006; 81: 14291434.CrossRefGoogle ScholarPubMed
Georgiev, SG, Latcheva, AZ, Pilossoff, VB, Lazarov, SD, Mitev, PD. Inhaled nitric oxide for elevated cavopulmonary pressure and hypoxemia after cavopulmonary operations. World J Pediatr Congenit Heart Surg 2012; 3: 2631.CrossRefGoogle ScholarPubMed
Stocker, C, Penny, DJ, Brizard, CP, Cochrane, AD, Soto, R, Shekerdemian, LS. Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery. Intensive Care Med 2003; 29: 19962003.CrossRefGoogle ScholarPubMed
Cai, J, Su, Z, Shi, Z, et al. Nitric oxide in conjunction with milrinone better stabilized pulmonary hemodynamics after Fontan procedure. Artif Organs 2008; 32: 864869.CrossRefGoogle ScholarPubMed
Loukanov, T, Bucsenez, D, Springer, W, et al. Comparison of inhaled nitric oxide with aerosolized iloprost for treatment of pulmonary hypertension in children after cardiopulmonary bypass surgery. Clin Res Cardiol 2011; 100: 595602.CrossRefGoogle ScholarPubMed
Limsuwan, A, Wanitkul, S, Khosithset, A, Attanavanich, S, Samankatiwat, P. Aerosolized iloprost for postoperative pulmonary hypertensive crisis in children with congenital heart disease. Int J Cardiol 2008; 129: 333338.CrossRefGoogle ScholarPubMed
Vorhies, EE, Caruthers, RL, Rosenberg, H, Yu, S, Gajarski, RJ. Use of inhaled iloprost for the management of postoperative pulmonary hypertension in congenital heart surgery patients: review of a transition protocol. Pediatr Cardiol 2014; 35: 13371343.CrossRefGoogle ScholarPubMed
Xu, Z, Zhu, L, Liu, X, Gong, X, Gattrell, W, Liu, J. Iloprost for children with pulmonary hypertension after surgery to correct congenital heart disease. Pediatr Pulmonol 2015; 50: 588595.CrossRefGoogle ScholarPubMed
Onan, IS, Ozturk, E, Yildiz, O, Altin, HF, Odemis, E, Erek, E. The effect of intravenous iloprost on pulmonary artery hypertension after paediatric congenital heart surgery. Interact Cardiovasc Thorac Surg 2016; 22: 194199.CrossRefGoogle ScholarPubMed
Peiravian, F, Amirghofran, AA, Borzouee, M, Ajami, GH, Sabri, MR, Kolaee, S. Oral sildenafil to control pulmonary hypertension after congenital heart surgery. Asian Cardiovasc Thorac Ann 2007; 15: 113117.CrossRefGoogle ScholarPubMed
Lee, JE, Hillier, SC, Knoderer, CA. Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Intensive Care Med 2008; 23: 329334.CrossRefGoogle ScholarPubMed
Nemoto, S, Sasaki, T, Ozawa, H, et al. Oral sildenafil for persistent pulmonary hypertension early after congenital cardiac surgery in children. Eur J Cardiothorac Surg 2010; 38: 7177.CrossRefGoogle ScholarPubMed
Fraisse, A, Butrous, G, Taylor, MB, Oakes, M, Dilleen, M, Wessel, DL. Intravenous sildenafil for postoperative pulmonary hypertension in children with congenital heart disease. Intensive Care Med 2011; 37: 502509.CrossRefGoogle ScholarPubMed
Farah, P, Ahmad-Ali, A, Hanane, G, Abbas, E. Additive effect of phosphodiesterase inhibitors in control of pulmonary hypertension after congenital cardiac surgery in children. Iran J Pediatr 2013; 23: 1926.Google ScholarPubMed
Giordano, R, Palma, G, Poli, V, et al. First experience with sildenafil after Fontan operation: short-term outcomes. J Cardiovasc Med (Hagerstown) 2015; 16: 552555.CrossRefGoogle ScholarPubMed
Mendoza, A, Albert, L, Belda, S, et al. Pulmonary vasodilator therapy and early postoperative outcome after modified Fontan operation. Cardiol Young 2015; 25: 11361140.CrossRefGoogle ScholarPubMed
Schulze-Neick, I, Li, J, Reader, JA, Shekerdemian, L, Redington, AN, Penny, DJ. The endothelin antagonist BQ123 reduces pulmonary vascular resistance after surgical intervention for congenital heart disease. J Thorac Cardiovasc Surg 2002; 124: 435441.CrossRefGoogle ScholarPubMed
Al-Metwali, BZ, Rivers, P, Goodyer, L, O'Hare, L, Young, S, Mulla, H. Personalised warfarin dosing in children post-cardiac surgery. Pediatr Cardiol 2019; 40: 17351744.CrossRefGoogle ScholarPubMed
Lowry, AW, Moffett, BS, Moodie, D, Knudson, JD. Warfarin anticoagulation after congenital heart surgery at a large children's hospital. Pediatr Cardiol 2012; 33: 13771382.CrossRefGoogle Scholar
Masoumi, G, Mardani, D, Musavian, M, Bigdelian, H. Comparison of the effect of fibrinogen concentrate with fresh frozen plasma (FFP) in management of hypofibrinogenemic bleeding after congenital cardiac surgeries: a clinical trial study. ARYA Atheroscler 2018; 14: 248253.Google Scholar
Mir, A, Frank, S, Journeycake, J, et al. Aspirin resistance in single-ventricle physiology: aspirin prophylaxis is not adequate to inhibit platelets in the immediate postoperative period. Ann Thorac Surg 2015; 99: 21582164.CrossRefGoogle Scholar
Schroeder, AR, Axelrod, DM, Silverman, NH, Rubesova, E, Merkel, E, Roth, SJ. A continuous heparin infusion does not prevent catheter-related thrombosis in infants after cardiac surgery. Pediatr Crit Care Med 2010; 11: 489495.Google Scholar
Thomas, CA, Taylor, K, Schamberger, MS, Rotta, AT. Safety of warfarin dosing in the intensive care unit following the Fontan procedure. Congenit Heart Dis 2014; 9: 361365.CrossRefGoogle ScholarPubMed
Vorisek, CN, Sleeper, LA, Piekarski, B, et al. High-dose heparin is associated with higher bleeding and thrombosis rates in pediatric patients following cardiac surgery. J Thorac Cardiovasc Surg 2019; 158: 11991206.CrossRefGoogle ScholarPubMed
Ando, M, Park, IS, Wada, N, Takahashi, Y. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg 2005; 80: 16721678.CrossRefGoogle ScholarPubMed
Dalili, M, Vesal, A, Tabib, A, Khani-Tafti, L, Hosseini, S, Totonchi, Z. Single dose corticosteroid therapy after surgical repair of Fallot’s tetralogy; a randomized controlled clinical trial. Res Cardiovasc Med 2015; 4: e25500.CrossRefGoogle ScholarPubMed
Maeda, T, Takeuchi, M, Tachibana, K, Nishida, T, Kagisaki, K, Imanaka, H. Steroids improve hemodynamics in infants with adrenal insufficiency after cardiac surgery. J Cardiothorac Vasc Anesth 2016; 30: 936941.CrossRefGoogle ScholarPubMed
Mastropietro, CW, Barrett, R, Davalos, MC, et al. Cumulative corticosteroid exposure and infection risk after complex pediatric cardiac surgery. Ann Thorac Surg 2013; 95: 21332139.CrossRefGoogle ScholarPubMed
Millar, KJ, Thiagarajan, RR, Laussen, PC. Glucocorticoid therapy for hypotension in the cardiac intensive care unit. Pediatr Cardiol 2007; 28: 176182.CrossRefGoogle ScholarPubMed
Neunhoeffer, F, Renk, H, Hofbeck, M, et al. Safety, efficacy and response to a hydrocortisone rescue therapy protocol in children with refractory hypotension after cardiopulmonal bypass. Pediatr Cardiol 2015; 36: 640645.CrossRefGoogle ScholarPubMed
Robert, SM, Borasino, S, Dabal, RJ, Cleveland, DC, Hock, KM, Alten, JA. Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med 2015; 16: 629636.CrossRefGoogle ScholarPubMed
Suominen, PK, Keski-Nisula, J, Ojala, T, et al. Stress-dose corticosteroid versus placebo in neonatal cardiac operations: a randomized controlled trial. Ann Thorac Surg 2017; 104: 13781385.CrossRefGoogle ScholarPubMed
Teagarden, AM, Mastropietro, CW. Clinical significance of serum cortisol levels following surgery for congenital heart disease. Cardiol Young 2017; 27: 318324.CrossRefGoogle ScholarPubMed
Verweij, EJ, Hogenbirk, K, Roest, AA, van Brempt, R, Hazekamp, MG, de Jonge, E. Serum cortisol concentration with exploratory cut-off values do not predict the effects of hydrocortisone administration in children with low cardiac output after cardiac surgery. Interact Cardiovasc Thorac Surg 2012; 15: 685689.CrossRefGoogle Scholar
Teagarden, A, Mastropietro, C. Association between serum cortisol levels and hydrocortisone therapy after pediatric cardiac surgery. Crit Care Med 2014; 42: A1410–A1411.CrossRefGoogle Scholar
Agus, MS, Steil, GM, Wypij, D, et al. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med 2012; 367: 12081219.CrossRefGoogle ScholarPubMed
Agus, MS, Asaro, LA, Steil, GM, et al. Tight glycemic control after pediatric cardiac surgery in high-risk patient populations: a secondary analysis of the safe pediatric euglycemia after cardiac surgery trial. Circulation 2014; 129: 22972304.CrossRefGoogle ScholarPubMed
Kanthimathinathan, HK, Sundararajan, SB, Laker, S, Scholefield, BR, Morris, KP. Targeting glycemic control after pediatric cardiac surgery: the influence of age on insulin requirement. Pediatr Crit Care Med 2015; 16: 853858.CrossRefGoogle ScholarPubMed
Bettendorf, M, Schmidt, KG, Grulich-Henn, J, Ulmer, HE, Heinrich, UE. Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 2000; 356: 529534.CrossRefGoogle ScholarPubMed
Balcells, J, Moreno, A, Audi, L, Roqueta, J, Iglesias, J, Carrascosa, A. Growth hormone/insulin-like growth factors axis in children undergoing cardiac surgery. Crit Care Med 2001; 29: 12341238.CrossRefGoogle ScholarPubMed
Dagan, O, Vidne, B, Josefsberg, Z, Phillip, M, Strich, D, Erez, E. Relationship between changes in thyroid hormone level and severity of the postoperative course in neonates undergoing open-heart surgery. Paediatr Anaesth 2006; 16: 538542.CrossRefGoogle ScholarPubMed
Pappachan, VJ, Brown, KL, Tibby, SM. Paediatric cardiopulmonary bypass surgery: the challenges of heterogeneity and identifying a meaningful endpoint for clinical trials. Intensive Care Med 2017; 43: 113115.CrossRefGoogle ScholarPubMed
Pasquali, SK, Hall, M, Slonim, AD, et al. Off-label use of cardiovascular medications in children hospitalized with congenital and acquired heart disease. Circ Cardiovasc Qual Outcomes 2008; 1: 7483.CrossRefGoogle ScholarPubMed
Lex, DJ, Toth, R, Czobor, NR, et al. Fluid overload is associated with higher mortality and morbidity in pediatric patients undergoing cardiac surgery. Pediatr Crit Care Med 2016; 17: 307314.CrossRefGoogle ScholarPubMed
Gonzalez, D, Laughon, MM, Smith, PB, et al. Best pharmaceuticals for children act - pediatric trials network steering committee. Population pharmacokinetics of sildenafil in extremely premature infants. Br J Clin Pharmacol 2019; 85: 28242837.CrossRefGoogle Scholar
Hornik, CP, Benjamin, DK Jr, Smith, PB, et al. Best pharmaceuticals for children act—pediatric trials network. Electronic health records and pharmacokinetic modeling to assess the relationship between ampicillin exposure and seizure risk in neonates. J Pediatr 2016; 178: 125.e1129.e1.CrossRefGoogle ScholarPubMed
Skarsgard, ED. The value of patient registries in advancing pediatric surgical care. J Pediatr Surg 2018; 53: 863867.CrossRefGoogle ScholarPubMed
Woodcock, J, LaVange, LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med 2017; 377: 6270.CrossRefGoogle ScholarPubMed
Gaies, M, Pasquali, SK, Banerjee, M, et al. Improvement in pediatric cardiac surgical outcomes through interhospital collaboration. J Am Coll Cardiol 2019; 74: 27862795.CrossRefGoogle ScholarPubMed
Hoerst, A, Bakar, A, Cassidy, SC, et al. Pediatric acute care cardiology collaborative (PAC3). Variation in care practices across pediatric acute care cardiology units: results of the pediatric acute care cardiology collaborative (PAC3) hospital survey. Congenit Heart Dis 2019; 14: 419426.CrossRefGoogle ScholarPubMed
Supplementary material: File

Thompson et al. supplementary material

Appendix

Download Thompson et al. supplementary material(File)
File 23.3 KB