Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T04:06:16.191Z Has data issue: false hasContentIssue false

Neonatal management and outcomes of prenatally diagnosed CHDs

Published online by Cambridge University Press:  26 May 2016

Myriam Bensemlali*
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
Fanny Bajolle
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France
Daniela Laux
Affiliation:
Cardiologie Pédiatrique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
Pauline Parisot
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
Magalie Ladouceur
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France
Laurent Fermont
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France
Marilyne Lévy
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France
Jérôme Le Bidois
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France
Francesca Raimondi
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France
Yves Ville
Affiliation:
Université Paris Descartes, Sorbonne Paris Cité, Paris, France APHP, Maternité, Service de Gynécologie-Obstétrique, Hôpital Necker Enfants malades, Paris, France
Laurent J. Salomon
Affiliation:
Université Paris Descartes, Sorbonne Paris Cité, Paris, France APHP, Maternité, Service de Gynécologie-Obstétrique, Hôpital Necker Enfants malades, Paris, France
Younes Boudjemline
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
Damien Bonnet
Affiliation:
Hôpital Necker Enfants malades, APHP, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
*
Correspondence to: Dr M. Bensemlali, MD, Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de référence Malformations Cardiaques Congénitales Complexes – M3C, Hôpital Necker Enfants Malades, APHP, Université Paris Descartes, Sorbonne Paris Cité, 149 rue de Sèvres, 75015 Paris, France, EU. Tel: + 331 7139 6623; Fax: +331 4449 4340; E-mail: [email protected]

Abstract

Objectives

The aim of this study was to determine the probability of intervention at birth after prenatal diagnosis of CHD.

Methods

A 10-year retrospective study including all foetuses with a prenatally diagnosed CHD and those delivered in a tertiary-care cardiac centre between January, 2002 and December, 2011 was carried out. Patients were classified into eight groups according to the anticipated risk of neonatal intervention.

Results

The need for urgent intervention and/or PGE1 infusion within the first 48 hours of life was 47% (n=507/1080): 72% (n=248) for CHD at risk for a Rashkind procedure, 77% (n=72) for CHD with ductal-dependent pulmonary flow, 13% (n=22) for CHD with potentially ductal-dependent pulmonary flow, 94% (n=62) for CHD with ductal-dependent systemic flow, 29% (n=88) for CHD with potentially ductal-dependant systemic flow, 50% (n=4) for total anomalous pulmonary venous connection, and 17% (n=1) for CHD with atrio-ventricular block. In all, 34% of the patients received PGE1 infusion and 21.4% underwent urgent catheter-based or surgical interventions; 10% of patients without anticipated risk (n=10) underwent an early intervention; 6.7% (n=73) of the patients died; and 55% (n=589) had an intervention before discharge from hospital.

Conclusion

Half of the neonates with foetal CHD benefited from an urgent intervention or PGE1 infusion at birth. We recommend scheduled delivery and in utero transfer for transposition of the great arteries, double-outlet right ventricle with sub-pulmonary ventricular septal defect, total anomalous pulmonary venous connection, CHD with atrio-ventricular block with heart rate <50, all ductal-dependant lesions, and CHD with potentially ductal-dependant systemic flow.

Type
Original Articles
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bonnet, D, Coltri, A, Butera, G, et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 1999; 99: 916918.CrossRefGoogle ScholarPubMed
2. Fuchs, IB, Müller, H, Abdul-Khaliq, H, et al. Immediate and long-term outcomes in children with prenatal diagnosis of selected isolated congenital heart defects. Ultrasound Obstet Gynecol. 2007; 29: 3843.CrossRefGoogle ScholarPubMed
3. Mahle, WT, Clancy, RR, McGaurn, SP, et al. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 2001; 107: 12771282.CrossRefGoogle ScholarPubMed
4. Tworetzky, W, McElhinney, DB, Reddy, VM, et al. Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation. 2001; 103: 12691273.Google Scholar
5. Franklin, O, Burch, M, Manning, N, et al. Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. Heart 2002; 87: 6769.Google Scholar
6. Penny, DJ, Shekerdemian, LS. Management of the neonate with symptomatic congenital heart disease. Arch Dis Child Fetal Neonatal Ed 2001; 84: F141F145.CrossRefGoogle ScholarPubMed
7. Johnson, BA, Ades, A. Delivery room and early postnatal management of neonates who have prenatally diagnosed congenital heart disease. Clin Perinatol 2005; 32: 921946, ix.CrossRefGoogle ScholarPubMed
8. Glatz, JA, Tabbutt, S, Gaynor, JW, et al. Hypoplastic left heart syndrome with atrial level restriction in the era of prenatal diagnosis. Ann Thorac Surg 2007; 84: 16331638.Google Scholar
9. Seale, AN, Carvalho, JS, Gardiner, HM, et al. Total anomalous pulmonary venous connection: impact of prenatal diagnosis. Ultrasound Obstet Gynecol 2012; 40: 310318.Google Scholar
10. Johnson, BA, Ades, A. Delivery room and early postnatal management of neonates who have prenatally diagnosed congenital heart disease. Clin Perinatol 2005; 32: 921946, ix.CrossRefGoogle ScholarPubMed
11. Khoshnood, B, De Vigan, C, Vodovar, V, et al. Trends in prenatal diagnosis, pregnancy termination, and perinatal mortality of newborns with congenital heart disease in France, 1983–2000: a population-based evaluation. Pediatrics 2005; 115: 95101.CrossRefGoogle ScholarPubMed
12. Khoshnood, B, Lelong, N, Houyel, L, et al. Prevalence, timing of diagnosis and mortality of newborns with congenital heart defects: a population-based study. Heart Br Card Soc 2012; 98: 16671673.Google Scholar
13. Khoshnood, B, De Vigan, C, Vodovar, V, et al. Trends in prenatal diagnosis, pregnancy termination, and perinatal mortality of newborns with congenital heart disease in France, 1983–2000: a population-based evaluation. Pediatrics 2005; 115: 95101.Google Scholar
14. Alsoufi, B, Cai, S, Williams, WG, et al. Improved results with single-stage total correction of Taussig-Bing anomaly. Eur J Cardiothorac Surg 2008; 33: 244250.CrossRefGoogle ScholarPubMed
15. Laux, D, Fermont, L, Bajolle, F, et al. Prenatal diagnosis of isolated total anomalous pulmonary venous connection: a series of 10 cases. Ultrasound Obstet Gynecol 2013; 41: 291297.Google Scholar
16. Allan, LD, Sharland, GK. The echocardiographic diagnosis of totally anomalous pulmonary venous connection in the fetus. Heart 2001; 85: 433437.CrossRefGoogle ScholarPubMed
17. Jaeggi, ET, Hornberger, LK, Smallhorn, JF, et al. Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet Gynecol 2005; 26: 1621.CrossRefGoogle ScholarPubMed
18. Hoque, T, Richmond, M, Vincent, JA, et al. Current outcomes of hypoplastic left heart syndrome with restrictive atrial septum: a single-center experience. Pediatr Cardiol 2013; 34: 11811189.Google Scholar
19. Vlahos, AP, Lock, JE, McElhinney, DB, et al. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation 2004; 109: 23262330.CrossRefGoogle ScholarPubMed
20. Matsui, H, Mellander, M, Roughton, M, et al. Morphological and physiological predictors of fetal aortic coarctation. Circulation 2008; 118: 17931801.CrossRefGoogle ScholarPubMed
21. McCandless, RT, Puchalski, MD, Minich, LL, et al. Prenatally diagnosed coarctation: a more sinister disease? Pediatr Cardiol 2012; 33: 11601164.Google Scholar
22. Head, CEG, Jowett, VC, Sharland, GK, et al. Timing of presentation and postnatal outcome of infants suspected of having coarctation of the aorta during fetal life. Heart Br Card Soc 2005; 91: 10701074.Google Scholar
23. Buyens, A, Gyselaers, W, Coumans, A, et al. Difficult prenatal diagnosis: fetal coarctation. Facts Views Vis ObGyn 2012; 4: 230236.Google Scholar
24. Gómez-Montes, E, Herraiz, I, Gómez-Arriaga, PI, et al. Gestational age-specific scoring systems for the prediction of coarctation of the aorta. Prenat Diagn 2014; 34: 11981206.CrossRefGoogle ScholarPubMed
25. Tuo, G, Volpe, P, Buffi, D, et al. Assessment of the ductus arteriosus in fetuses with tetralogy of fallot and the implication for postnatal management. Congenit Heart Dis 2014; 9: 382390.Google Scholar
26. Arya, B, Levasseur, SM, Woldu, K, et al. Fetal echocardiographic measurements and the need for neonatal surgical intervention in tetralogy of fallot. Pediatr Cardiol 2014; 35: 810816.Google Scholar
27. Quartermain, MD, Glatz, AC, Goldberg, DJ, et al. Pulmonary outflow tract obstruction in fetuses with complex congenital heart disease: predicting the need for neonatal intervention. Ultrasound Obstet Gynecol 2013; 41: 4753.CrossRefGoogle ScholarPubMed
28. Simpson, LL, Harvey-Wilkes, K, D’Alton, ME. Congenital heart disease: the impact of delivery in a tertiary care center on SNAP scores (scores for neonatal acute physiology). Am J Obstet Gynecol 2000; 182 (Pt 1): 184191.Google Scholar
29. Anagnostou, K, Messenger, L, Yates, R, et al. Outcome of infants with prenatally diagnosed congenital heart disease delivered outside specialist paediatric cardiac centres. Arch Dis Child Fetal Neonatal Ed 2013; 98: F218F221.CrossRefGoogle ScholarPubMed
30. Donofrio, MT, Levy, RJ, Schuette, JJ, et al. Specialized delivery room planning for fetuses with critical congenital heart disease. Am J Cardiol 2013; 111: 737747.Google Scholar
31. Anderson, BR, Ciarleglio, AJ, Hayes, DA, et al. Earlier arterial switch operation improves outcomes and reduces costs for neonates with transposition of the great arteries. J Am Coll Cardiol 2014; 63: 481487.Google Scholar
32. Calderon, J, Angeard, N, Moutier, S, et al. Impact of prenatal diagnosis on neurocognitive outcomes in children with transposition of the great arteries. J Pediatr 2012; 161: 94–8.e1.CrossRefGoogle ScholarPubMed
33. Jegatheeswaran, A, Oliveira, C, Batsos, C, et al. Costs of prenatal detection of congenital heart disease. Am J Cardiol 2011; 108: 18081814.CrossRefGoogle ScholarPubMed
34. Hellström-Westas, L, Hanséus, K, Jögi, P, et al. Long-distance transports of newborn infants with congenital heart disease. Pediatr Cardiol 2001; 22: 380384.Google Scholar
35. Meyer-Wittkopf, M, Rappe, N, Sierra, F, Barth, H, Schmidt, S. Three-dimensional (3-D) ultrasonography for obtaining the four and five-chamber view: comparison with cross-sectional (2-D) fetal sonographic screening. Ultrasound Obstet Gynecol 2000; 15: 397402.Google Scholar
36. Volpe, P, Campobasso, G, Stanziano, A, et al. Novel application of 4D sonography with B-flow imaging and spatio-temporal image correlation (STIC) in the assessment of the anatomy of pulmonary arteries in fetuses with pulmonary atresia and ventricular septal defect. Ultrasound Obstet Gynecol 2006; 28: 4046.Google Scholar
37. Loomba, RS, Chandrasekar, S, Shah, PH, Sanan, P. The developing role of fetal magnetic resonance imaging in the diagnosis of congenital cardiac anomalies: a systematic review. Ann Pediatr Cardiol 2011; 4: 172176.Google Scholar
38. Wielandner, A, Mlczoch, E, Prayer, D, Berger-Kulemann, V. Potential of magnetic resonance for imaging the fetal heart. Semin Fetal Neonatal Med 2013; 18: 286297.Google Scholar