Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T16:34:34.013Z Has data issue: false hasContentIssue false

Neonatal and infant physiology—impact of cardiopulmonary bypass in the developing patient

Published online by Cambridge University Press:  19 August 2008

Richard Lambert Auten Jr*
Affiliation:
From the Division of Neonatal Medicine, Duke University Medical Center, Durham
*
Dr. Richard Lambert Auten, Jr., Division of Neonatal Medicine, Duke University Medical Center, Box 3179 DUMC, Durham, North Carolina 27710, USA. Tel. (919) 681-6024; Fax. (919) 681-6065.

Abstract

Cardiopulmonary bypass has been extended to the very young patient undergoing operative correction of congenital heart defects. Growth and development of the central nervous, cardiovascular, pulmonary, and renal systems place significant metabolic and nutritional demands on cellular growth and repair. Immature homeostatic regulation and cellular function require modification of the approaches to preservation of organs and cardiovascular support used in older children and adults undergoing open-heart surgery. Aspects of newborn and infant physiology relevant to cardiopulmonary bypass and postoperative care are reviewed. Current approaches and future strategies designed to address the needs of the developing patient who requires cardiopulmonary bypass are discussed.

Type
World Forum for Pediatric Cardiology Symposium on Cardiopulmonary Bypass (Part 2)
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kirklin, JK. Neonatal cardiopulmonary bypass. In: Long, WA (ed). Neonatal Cardiology. W.B. Saunders, Philadelphia, 1990, pp. 736741.Google Scholar
2.Planché, C, Bruniaux, J, Lacour, GF, Kachaner, J, Binet, JP, Sidi, D, Villain, E. Switch operation for transposition of the great arteries in neonates. A study of 120 patients. J Thorac Cardiovasc Surg 1988; 96: 354363.CrossRefGoogle ScholarPubMed
3.Singh, AK, Corwin, RD, Teplitz, C, Karison, KE. Consecutive repair of complex congenital heart disease using hypothermic cardioplegic arrest—its results and ultrastructural study of the myocardium. Thorac Cardiovasc Surgeon 1984; 32: 2326.CrossRefGoogle ScholarPubMed
4.Kirklin, JK. Prospects for understanding and eliminating the deleterious effects of cardiopulmonary bypass. Ann Thorac Surg 1991; 51: 529531.CrossRefGoogle ScholarPubMed
5.Greeley, WJ, Ungerleider, RM. Assessing the effect of cardiopulmonary bypass on the brain. Ann Thorac Surg 1991; 52: 417419. [Editorial]CrossRefGoogle ScholarPubMed
6.Greeley, WJ, Bracey, VA, Ungerleider, RM, Greibel, JA, Kern, FH, Boyd, JL, Reves, JG, Piantadosi, CA. Circulatory arrest. Recovery ofcerebral metabolism and mitochondrial oxidation state is delayed after hypothermic circulatory arrest. Circulation 1991; 84: 400406.Google Scholar
7.Greeley, WJ, Kern, FH, Ungerleider, RM, Boyd, J, Quill, T, Smith, LR, Baldwin, B, Reves, JG. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg 1991; 101: 783794.CrossRefGoogle ScholarPubMed
8.Greeley, WJ, Ungerleider, RM, Kern, FH, Brusino, FG, Smith, LR, Reves, JG. Effects of cardiopulmonary bypass on cerebral blood flow in neonates, infants, and children. Circulation 1989; 85: 209215.Google Scholar
9.Volpe, JJ. Neurology of the Newborn. W.B. Saunders, Philadelphia, 1987.Google Scholar
10.Ment, LR, Scott, DT, Lange, RC, Ehrenkranz, RA, Duncan, CC, Warshaw, JB. Postpartum perfusion of the preterm brain: relationship to neurodevelopmental outcome. Child Brain 1983; 10: 266272.Google ScholarPubMed
11.Ho, SY, Angelini, A, Moscoso, G. Developmental cardiac anatomy. In: Long, WA (ed). Fetal and Neonatal Cardiology. W.B. Saunders, Philadelphia, 1990, pp 316.Google Scholar
12.Volpe, JJ. Neuronal proliferation, migration, organization, and myelination. In: Volpe, JJ (ed). Neurology of the Newborn. W.B. Saunders, Philadelphia, 1987, pp 3368.Google Scholar
13.Sykorova, J. Formation of the cell population of the central nervous system during the embryonic and early postnatal development period. Ceskoslovenska Fysiologie 1989; 38: 528.Google ScholarPubMed
14.Ferry, PC. Neurologic sequelae of cardiac surgery in children. AmJ Dis Child 1987; 141: 309312.Google ScholarPubMed
15.Ferry, PC. Neurologic sequelaie of open-heart surgery in children. An “irritating question.” Am J Dis Child 1990; 144: 369373.CrossRefGoogle Scholar
16.Leuschen, MP, Nelson, RJ. Effects of asphyxia on telencephalic microvessels of premature beagle pups. J Perinatol 1987; 7: 9399.Google ScholarPubMed
17.Lou, HC. The “lost autoregulation hypothesis” and brain lesions in the newborn—an update. Brain Dcv 1988; 10: 143146.CrossRefGoogle Scholar
18.Tweed, W, Core, J, Pash, M, Lou, H. Arterial oxygenation determines autoregularion of cerebral blood flow in the fetal lamb. Pediat Res 1983; 17: 246249.CrossRefGoogle Scholar
19.Tweed, W, Cote, J, Wade, J. Preservation of fetal brain blood flow relative to other organs during hypovolemic hypotension. Pediat Res 1982; 16: 137140.CrossRefGoogle ScholarPubMed
20.Jorch, G, Jorch, N. Failure of autoregulation of cerebral blood flow in neonates studied by pulsed Doppler ultrasound of the internal carotid artery. EurJ Pediat 1987; 146: 468472.CrossRefGoogle ScholarPubMed
21.Volpe, JJ. Intraventricular hemorrhage in the premature infant–current concepts. Part I. Ann Neurol 1989; 25: 311.CrossRefGoogle ScholarPubMed
22.Gleason, CA, Jones, MJ, Traystman, RJ, Notter, RH. Fetal cerebral responses to ventilation and oxygenation in utero. Am J Physiol 1988; 255: R 1049R 1054.Google ScholarPubMed
23.Ment, LR, Stewart, WB, Gore, JC, Duncan, CC. Beagle puppy model of perinatal asphyxia: alterations in cerebral blood flow and metabolism. Pediat Neurol 1988; 4: 98104.CrossRefGoogle ScholarPubMed
24.Ment, LR, Stewart, WB, Duncan, CC, Pitt, BR, Rescigno, A, Cole, J. Beagle puppy model of perinatal cerebral infarction. Acute changes in cerebral blood flow and metabolism during hemorrhagic hypotension. J Neurosurg 1985; 63: 441447.CrossRefGoogle ScholarPubMed
25.Fox, LS, Blackstone, EH, Kirklin, JW, Bishop, SP, Bergdahl, LA, Bradley, EL. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. An experimental study. J Thorac Cardiovasc Surg 1984; 87: 658664.CrossRefGoogle ScholarPubMed
26.Volpe, JJ, Herscovitch, P.Perlman, JM, Kreusser, KL, Raichle, ME. Positron emission tomography in the asphyxiated term newborn: parasagittal impairment ofcerebral blood flow. Ann Neurol 1985; 17: 287296.CrossRefGoogle Scholar
27.Aitman, DI, Volpe, JJ. Positron emission tomography in newborn infants. Clin Perinatol 1991; 18: 549562.CrossRefGoogle Scholar
28.Brazy, JE. Near-infrared spectroscopy. Clin Perinatol 1991; 18: 519534.CrossRefGoogle ScholarPubMed
29.Pryds, O, Greisen, G, Lou, H, Friis, HB. Heterogeneity of cerebral vasoreactiviry in preterm infants supported by mechanical ventilation. J Pediatr 1989; 115: 638645.CrossRefGoogle ScholarPubMed
30.Pryds, O, Greisen, G, Skov, LL. Carbon dioxide-related changes in cerebral volume and cerebral blood flow in mechanically ventilated preterm neonates: comparison of near infrared spectrophotometry and xenon clearance. Pediatr Res 1990; 27: 445449.CrossRefGoogle Scholar
31.Hope, PL, Moorcraft, J. Magnetic resonance spectroscopy. Clin Perinatol 1991; 18: 535548.CrossRefGoogle ScholarPubMed
32.Anderson, PAW. Myocardial development. In: Long, WA (ed). Fetal and Neonatal Cardiology. W.B. Saunders, Philadelphia, 1990, pp 1738.Google Scholar
33.Romero, T, Correl, J, Friedman, WF. A comparison ofpressure/ volume relationships of the fetal, newborn, and adult heart. Am J Physiol 1972; 222: 12851290.CrossRefGoogle Scholar
34.Romero, TE, Friedman, WF. Litnited left ventricular response to volume overload in the neonatal period: a comparative study with the adult animal. Pediatr Res 1979; 13: 910915.CrossRefGoogle ScholarPubMed
35.Klopfenstein, HS, Rudolph, AM. Post-natal changes in the circulation and responses to volume loading in the sheep. Circ Res 1978; 42: 839845.CrossRefGoogle Scholar
36.Keeley, SR, Bohn, DJ. The use of inotropic and afterloadreducing agents in neonates. Clin Perinatol 1988; 15: 467489.CrossRefGoogle ScholarPubMed
37.Haworth, SH. Pulmonaryvascular development. In: Long, WA (ed). Fetal and Neonatal Cardiology. W.B. Saunders, Philadelphia, 1990, pp 5163.Google Scholar
38.Damen, J, Hitchcock, JF. Reactive pulmonary hypertension after a switch operation. Successful treatment with glyceiyl trinitrate. Br HeartJ 1985; 53: 223225.CrossRefGoogle ScholarPubMed
39.Long, WA. Developmental pulmonary circulatory physiology. In: Long, WA (ed). Fetal and Neonatal Cardiology, W.B. Saunders, Philadelphia, 1990, pp 7696.Google Scholar
40.Long, WA, Rubin, U. Prostacyclin and PGE treatment of pulmonary hypertension. Am Rev Resp Dis 1987; 136: 773776.CrossRefGoogle Scholar
41.Graves, E, Redmond, CR, Arensman, RM. Persistent pulmonary hypertension in the neonate. Chest 1988; 93: 638641.CrossRefGoogle ScholarPubMed
42.Kulik, TJ, Lock, JE. Pulmonary vasodilator therapy in persistent pulmonary hypertension of the newborn. Clin Perinatol 1984; 11: 693701.CrossRefGoogle ScholarPubMed
43.Coceani, F, Olley, PM. Eicosanoids in the fetal and transitional pulmonary circulation. Chest 1988; 93: 112117.CrossRefGoogle ScholarPubMed
44.Frostell, C, Fratacci, MD, Wain, JC, Jones, R, Zapol, WM. Inhaled nitric oxide. A selective pulmonaryvasodilator revers ing hypoxic pulmonary vasoconstriction. Circulation 1991; 83: 20382047.CrossRefGoogle Scholar
45.Kirklin, JK, Blackstone, EH, Kirklin, JW, McKay, R, Pacifico, AD, Bargeron, J. Intracardiac surgery in infants under age 3 months: incremental risk factors for hospital mortality. Am J Cardiol 1981; 48: 500506.CrossRefGoogle ScholarPubMed
46.Lefkowitz, RJ, Stadd, JM, Cerone, PA. Structure and function of ß-adrenergic receptors. Adv Cyclic Nucleotide Protein Phosphorylation Res 1984; 17: 1928.Google Scholar
47.Guyton, AC, Hall, JE. Cardiovascular Physiology IV. University Park Press, Baltimore, 1980.Google Scholar
48.Bhatt, MV, Nahata, Mc. Dopainine and dobutamine in pediatric therapy. Pharmacotherapy 1989; 9: 303314.CrossRefGoogle Scholar
49.Stopfkuchen, H, Racke, K, Schworer, H, Queisser, LA, Vogel, K. Effects of dopamine infusion on plasma catecholamines in preterm and term newborn infants. Eur J Pediatr 1991; 150: 503506.CrossRefGoogle ScholarPubMed
50.Stopfkuchen, H, Queisser, LA, Vogel, K. Cardiovascular responses to dobutamine determined by systolic time intervals in preterm infants. Crit Care Med 1990; 18: 722724.CrossRefGoogle ScholarPubMed
51.Banner, WJ, Vernon, DD, Dean, JM, Swenson, E. Nonlinear dopamine pharmacokinetics in pediatric patients. J Pharm Exp Therapeutics 1989; 249: 131133.Google ScholarPubMed
52.Padbury, JF, Agata, Y, Baylen, BG, Ludlow, JK, Polk, DH, Habib, DM, Martinez, AM. Pharmacokinetics of dopamine in criti cally ill newborn infants. J Pediatr 1990; 117: 472476.CrossRefGoogle Scholar
53.Bhatt, MV, Nahata, Mc, McClead, RE, Menkej, A. Dopamine pharmacokinetics in critically ill newborn infants. Eur J Clin Pharmacol 1991; 40: 593597.CrossRefGoogle Scholar
54.Cuevas, L, Yeh, TF, John, EG, Cuevas, D, Plides, RS. The effect of low-dose dopamine infusion on cardiopulmonary and renal status in premature newborns with respiratory distress syn drome. AmJ Dis Child 1991; 145: 799803.Google Scholar
55.Martinez, AM, Padbury, JF, Thio, S. Dobutamine pharmacokinetics and cardiovascular responses in critically ill neonates. Pediatrics 1992; 89: 4751.CrossRefGoogle ScholarPubMed
56.Schwartz, PH, Eldadah, MK, Newth, CJ. The pharmacokinetics of dobutamine in pediatric intensive care unit patients. Drug Metabolism & Disposition: the Biological Fate of Chemicals 1991; 19: 614619.Google Scholar
57.Wenstone, R, Campbell, JM, Booker, PD, McKay, R. Renal function after cardiopulmonary bypass in children: compari son of dopamine with dobutamine. Br J Anaesth 1991; 67: 591594.CrossRefGoogle Scholar
58.Butt, W, Bohn, D, Whyte, H. Clinical experience with systemic vasodilator therapy in the newborn infant. Austr Paediatr J 1986; 22: 117120.Google ScholarPubMed
59.Berner, M, Jaccard, C, Oberhansli, I, Rouge, JC, Friedli, B. Hemodynamic effects of amrinone in children after cardiac surgery. Int Care Med 1990; 16: 8588.CrossRefGoogle ScholarPubMed
60.Wessel, A, Seiffert, P. Effects ofamrinone in myocardial insufliciency following heart surgery in children. Monatsschrift Kinderheilkunde 1989; 137: 712715.Google ScholarPubMed
61.Lawless, S, Burckart, G, Diven, W, Thompson, A, Siewers, R. Amrinone pharmacokinetics in neonates and infants. J Clin Pharmacol 1988; 28: 283284.CrossRefGoogle ScholarPubMed
62.Lawless, ST, Zaritsky, A, Miles, M. The acute pharmacokinetics and pharmacodynamics of amrinone in pediatric patients. J Clin Pharmacol 1991; 31: 800803.CrossRefGoogle ScholarPubMed
63.Hammon, JJ, Graham, TJ, Boucek, RJ, Parrish, MD, Merrill, WH, Bender, HJ. Myocardial adenosine triphosphate content as a measure of metabolic and functional myocardial protec tion in children undergoing cardiac operation. Ann Thorac Surg 1987; 44: 467470.CrossRefGoogle Scholar
64.Lofland, GK, Abd, EA, Wyse, R, Stark, J, Wechsler, AS. Myocardial adenine nucleotide metabolism in pediatric patients during hypothermic cardioplegic arrest and normothermic isch emia. Ann Thorac Surg 1989; 47: 663668.CrossRefGoogle Scholar
65.Davtyan, HG, Corno, AF, Laks, H, Bhuta, S, Flynn, WM, Laidig, C, Chang, P.Drinkwater, D. Long-term neonatal heart preservation. J Thorac Cardiovasc Surg 1988; 96: 4453.CrossRefGoogle ScholarPubMed
66.Das, DK, Engelman, RM, Liu, X, Maity, S, Rousou, JA, Flack, J, Laksmipati, J, Jones, RM, Prasad, MR, Deaton, DW. Oxygenderived free radicals and hemolysis during open heart surgery. Mol Cell Biochem 1992; 111: 7786.CrossRefGoogle ScholarPubMed
67.Prasad, K, Kaira, J, Bharadwaj, B, Chaudhaiy, AK. Increased oxygen free radical activity in patients on cardiopulmonary bypass undergoing aortocoronary bypass surgery. Am Heart J 1992; 123: 3745.CrossRefGoogle ScholarPubMed
68.Moore, FJ, Warner, KG, Assousa, S, Valeri, CR, Khuri, SF. The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin, and hemodilution. Ann Surg 1988; 208: 95103.CrossRefGoogle ScholarPubMed
69.Nilsson, L, Brunnkvist, S, Nilsson, U, Nystrom, SO, Tyden, H, Venge, P, Aberg, T. Activation of inflammatory systems during cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 1988; 22: 5153.CrossRefGoogle ScholarPubMed
70.Breda, MA, Drinkwater, DC, Laks, H, Bhuta, S, Corno, AF, Davtyan, HG, Chang, P. Prevention of reperfusion injury in the neonatal heart with leukocyte-depleted blood. J Thorac Cardiovasc Surg 1989; 97: 654665.CrossRefGoogle ScholarPubMed
71.Davies, GG, Wells, DG, Mabee, TM, Sadler, R, Melling, NJ. Platelet-leukocyte plasmapheresis attenuates the deleterious effects of cardiopulmonary bypass. Ann Thorac Surg 1992; 53: 274277.CrossRefGoogle ScholarPubMed
72.Bando, K, Pillai, R, Cameron, DE, Brawn, JD, Winkelstein, JA, Hutchins, GM, Reitz, BA, Baumgarrner, WA. Leukocyte depletion ameliorates free radical-mediated lung injury after cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990; 99: 873877.CrossRefGoogle ScholarPubMed
73.Bartlett, R, Gazzaniga, A. Extracorporeal Circulation for Cardiopulmoary Failure. Year Book Medical Publishers, New York, 1978.Google Scholar
74.Stork, E. Extracorporeal membrane oxygenation in the newborn and beyond. Clin Perinatol 1988; 15: 815829.CrossRefGoogle ScholarPubMed
75.Hunkeler, NM, Canter, CE, Donze, A, Spray, TL. Extracorporeal life support in cyanotic congenital heart disease before cardiovascular operation. Am J Cardiol 1992; 69: 790793.CrossRefGoogle ScholarPubMed
76.Meliones, JN, Custer, JR, Snedecor, S, Moler, FW, O'Rourke, PP, Delius, RE. Extracorporeal life support for cardiac assist in pediatric patients. Review of ELSO Registry data. Circulation 1991; 84 (Suppl III): III 168III 172.Google ScholarPubMed
77.Delius, RE, Bove, EL, Meliones, JN, Custer, JR, Moler, FW, Crowley, D, Amirikia, A, Behrendt, DM, Bartlett, RH. Use of extracorporeal life support in patients with congenital heart disease. Crit Care Med 1992; 20: 12161222.CrossRefGoogle ScholarPubMed
78.Klein, MD, Shaheen, KW, Whittlesey, GC, Pinsky, WW, Arciniegas, E. Extracorporeal membrane oxygenation for the circulatory support of children after repair of congenital heart disease. J Thorac Cardiovasc Surg 1990; 100: 498505.CrossRefGoogle ScholarPubMed
79.Weinhaus, L, Canter, C, Noetzel, M, McAlister, W, Spray, TL. Extracorporeal membrane oxygenation for circulatory support after repair of congenital heart defects. Ann Thorac Surg 1989; 48: 206212.CrossRefGoogle ScholarPubMed
80.Rogers, AJ, Trento, A, Siewers, RD, Griffith, BP, Hardesty, RL, Pahl, E, Beerman, LB, Fricker, FJ, Fischer, DR. Extracorporeal membrane oxygenation for postcardiotomy cardiogenic shock in children. Ann Thorac Surg 1989; 47: 903906.CrossRefGoogle ScholarPubMed
81.Plowden, JS, Kimball, TR, Bensky, A, Savani, R, Flake, AW, Warner, BW, Ryckman, FC. The use of extracorporeal membrane oxygenation in critically ill neonates with Ebstein's anomaly. Am HeartJ 1991; 121: 619622.CrossRefGoogle ScholarPubMed
82.O'Rourke, PP. Use of extracorporeal life support in patients with congenital heart disease: state of the art? Crit Care Med 1992; 20: 11992000.Google Scholar
83.Wildevuur, CR, Oeveren, WV. Artificial lung: current problems. Life Support Systems 1986; 1: 130135.Google Scholar
84.VanMeurs, KP, Frankel, LR, Pearl, RG. Extracorporeal life support: issues of who, when, why, and how. Crit Care Med 1992; 20: 12001202. [Editorial]Google Scholar
85.Kern, FH, Morana, NJ, Sears, JJ, Hickey, PR. Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg 1992; 54: 541546.CrossRefGoogle ScholarPubMed
86.Yeh, TJ, Parmar, JM, Rebeyka, TM, Lofland, GK, Allen, EL, Dignan, RJ, Dyke, CM, Wechsler, AS. Limiting edema in neonatal cardiopulmonary bypass with narrow-range molecular weight hydroxyethyl starch. J Thorac Cardiovasc Surg 1992; 104: 659665.CrossRefGoogle ScholarPubMed
87.Hirschl, RB, Heiss, KF, Bartlett, RH. Severe myocardial dysfunction during extracorporeal membrane oxygenation. J Pediatr Surg 1992; 27: 4853.CrossRefGoogle ScholarPubMed
88.Dickson, ME, Hirthler, MA, Simoni, J, Bradley, , Goldthorn, JF. Stunned myocardium during extracorporeal membrane oxygenation. Am J Surg 1990; 160: 644646.CrossRefGoogle ScholarPubMed
89.Kimball, TR, Daniels, SR, Weiss, RG, Meyer, RA, Hannon, DW, Ryckman, FC, Tian, J, Shukla, R, Schwartz, DC. Changes in cardiac function during extracorporeal membrane oxygenation for persistent pulmonary hypertension in the newborn infant. J Pediatr 1991; 118: 431436.CrossRefGoogle ScholarPubMed
90.Messent, M, Sullivan, K, Keogh, BF, Morgan, CJ, Evans, TW. Adult respiratory distress syndrome following cardiopulmo nary bypass: incidence and prediction. Anaesthesia 1992; 47: 267268.CrossRefGoogle Scholar
91.Massaro, D. Lung Cell Biology. Dekker, New York, 1989.Google Scholar
92.Jobe, A. The role of surfactant in neonatal adaptation. Seminars Perinatol 1988; 12: 113123.Google ScholarPubMed
93.Notter, RH. Biophysical behavior of lung surfactant: implications for respiratory physiology and pathophysiology. Seminars Perinatol 1988; 12: 180212.Google ScholarPubMed
94.Lachmann, B. Animal studies ofsurfactant replacement therapy. Develop Pharmacol Therapeut 1989; 13: 164172.CrossRefGoogle Scholar
95.Holm, BA, Matalon, S, Finkelstein, JN, Notter, RH. Type II pneumocyte changes during hyperoxic lung injury and recovery. J Applied Physiol 1988; 65: 26722678.CrossRefGoogle ScholarPubMed
96.Horowitz, S, Dafni, N, Shapiro, DL, Holm, BA, Notter, RH, Quible, DJ. Hyperoxic exposure alters gene expression in the lung. Induction of the tissue inhibitor of metalloproteinases mRNA and other mRNAs. J Biological Chem 1989; 264: 70927095.CrossRefGoogle ScholarPubMed
97.Horowitz, S, Shapiro, DL, Finkelstein, JN, Notter, RH, Johnston, CJ, Quible, DJ. Changes in gene expression in hyperoxiainduced neonatal lung injury. Am J Physiol 1990; 258: L 107L 111.Google ScholarPubMed
98.Horowitz, S, Watkins, RH, Auten, RL, Mercier, CE, Cheng, ER. Differential accumulation of surfactant protein A, B, and C mRNAs in two epithelial cell types of hyperoxic lung. Am J Resp Cell Mol Biol 1991; 5: 511515.CrossRefGoogle Scholar
99.Hallman, M, Maasilta, P, Sipila, I, Tahvanainen, J. Composition and function of pulmonary surfactant in adult respiratory distress syndrome. Eur Resp J 1989; 3(Suppl): 104 S108S.Google ScholarPubMed
100.Nogee, LM, Wispe, JR, Clark, JC, Weaver, TE, Whitsett, JA. Increased expression of pulmonary surfactant proteins in oxygen-exposed rats. Am J Resp Cell Mol Biol 1991; 4: 102107.CrossRefGoogle ScholarPubMed
101.Nogee, LM, Wispe, JR.Clark, JC, Whitsett, JA. Increased synthesis and mRNA of surfactant protein A in oxygen-exposed rats. AmJ Resp Cell Mol Biol 1989; 1: 119125.CrossRefGoogle ScholarPubMed
102.Bonser, RS, Dave, J, Morgan, J, Morgan, C, Davies, E, Taylor, P, Gaya, H, John, L, Paneth, M, Vergani, D. Complement activa tion during bypass in acquired Cl esterase inhibitor defi ciency. Ann Thorac Surg 1991; 52: 541543.CrossRefGoogle Scholar
103.Hashimoto, K, Miyamoto, H, Suzuki, K, Horikoshi, S, Matsui, M, Arai, T, Kurosawa, H. Evidence of organ damage after cardiopulmonary bypass. The role of elastase and vasoactive mediators. J Thorac Cardiovasc Surg 1992; 104: 666673.CrossRefGoogle ScholarPubMed
104.Mellbye, OJ, Froland, SS, Lilleaasen, P, Svennevig, JL, Mollnes, TE. Complement activation during cardiopulmonary bypass: comparison between the use of large volumes of plasma and dextran 70. Eur Surg Res 1988; 20: 101109.CrossRefGoogle ScholarPubMed
105.Togashi, K, Moro, H, Nakazawa, S, Okazaki, H, Yazawa, M, Eguchi, S. Complement activation during cardiopulmonary bypass: mechanism and prevention. Kyobu GekaJapJ Thorac Surg 1989; 42: 529532.Google ScholarPubMed
106.Volanakis, JE. Complement activation caused by different oxygenators. J Thorac Cardiovasc Surg 1989; 98: 292295. [CrossRefGoogle ScholarPubMed
107.Howard, RJ, Cram, C, Franzini, DA, Hood, CI, Hugh, TE. Effects of cardiopulmonary bypass on pulmonary leukostasis and complement activation. Archiv Surg 1988; 123: 14961501.CrossRefGoogle ScholarPubMed
108.Auten, RL, Notter, RH, Kendig, JW, Davis, JM, Shapiro, DL. Surfactant treatment of full-term newborns with respiratory failure. Pediatrics 1991; 87: 101107.CrossRefGoogle ScholarPubMed
109.Loewen, GM, Holm, BA, Milanowski, L, Wild, LM, Notter, RH, Matalon, S. Alveolar hyperoxic injury in rabbits receiving exogenous surfactanr. J Applied Physiol 1989; 66: 10871092.CrossRefGoogle Scholar
110.Lotze, A, Knight, GR, Bulas, DI, Martin, GR, Hull, WM, Whitsett, JA, Short, BL. Surfantant treatment of term infants in respirtory failure on ECMO: improved pulmonary out come. Pediatr Res 1992; 31: 315A. [Abstract]Google Scholar
1ll. Lotze, A, Whitsett, JA, Kammerman, LA, Ritter, M, Taylor, GA, Short, B. Surfactant protein A concentrations in tracheal aspirate fluid from infants requiring extracorporeal membrane oxygenation. J Pediatrics 1990; 116: 435440.CrossRefGoogle ScholarPubMed
112.Clerch, LB, Iqbal, J, Massaro, D. Perinatal rat lung catalase gene expression: influence of corticosteroid and hyperoxia. Am J Physiol 1991; 260: L423–L428.Google ScholarPubMed
113.Frank, L. Antioxidants, nutrition, and bronchopulmnary dys plasia. Clin Perinatol 1992; 19: 541562.CrossRefGoogle Scholar
114.Clyde, B, Chang, L-Y, Auten, R, Ho, Y-S, Crapo, JD. Distribu tion of manganese superoxide dismutase mRNA in normal and hyperoxic rat lung. Am]; J Respir Cell Mol Biol 1993. [In press]CrossRefGoogle Scholar
115.Inoue, M, Watanaqbe, N, Matsuro, K. Expression of a hybrid Cu/Zn-type superoxide dismutase which has a high affinity for heparin-like proteoglycans on vascular endothelial cells. J Biol Chem 1991; 266: 1640916414.CrossRefGoogle Scholar
116.Inoue, M, Watanabe, N, Marino, Y. Inhibition of oxygen toxicity by targeting superoxide dismutase to endothelial cell surface. FEBS Letters 1990; 269: 8992.CrossRefGoogle ScholarPubMed
117.Tanswell, AK, Freeman, BA. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles. Pediatr Res 1987; 18: 584587.CrossRefGoogle Scholar
118.Turrens, JF, Crapo, JD, Freeman, BA. Protection against oxygen toxicity by intravenous injection ofliposome-entrapped catalase and superoxide dismutase. J Clin Invest 1984; 73: 8795.CrossRefGoogle ScholarPubMed
119.Joachimsson, PO, Stahle, E, Nystrom, SO, Tyden, H. Incidence of acute renal failure in open heart surgery. J Cardiothorac Anest 1989; 3: 58.CrossRefGoogle ScholarPubMed
120.Larsson, SH, Aperia, A. Renal growth in infancy and child hood—experimental studies ofregulatory mechanisms. Pediatr Nephrol 1991; 5: 439442.CrossRefGoogle Scholar
121.Guignard, JP, Gouyon, JB, John, EG. Vasoactive factors in the immature kidney. Pedjatr Nephrol 1991; 5: 443446.CrossRefGoogle ScholarPubMed
122.Fetterman, GH, Shuplock, NA, Philhip, FJ. The growth and maturation of human glomeruhi and proximal convolutions from term to adulthood. Pediatrics 1965; 35: 601619.CrossRefGoogle ScholarPubMed
123.Jose, PA, Stewart, CL, Tina, LU, Calcagno, PL. Renal disease. In: Avery, GA (ed). Neonarology. Lippincott, Philadelphia, 1987, pp 795849.Google Scholar
124.Gruskin, AB, Auerbach, VH, Black, IFS. Intrarenal blood flow in children with normal kidneys and congenital heart disease: changes attributable angiography. Pediatr Res 1974; 8: 561572.CrossRefGoogle ScholarPubMed
125. Guignard J-P, John, EG. Renal function in the tiny, premature infant. Chin Perinatol 1986; 13: 377401.Google Scholar
126.Sulyok, E. Dopaminergic control of neonatal salt and water metabolism. Pediatr Nephrol 1988; 2: 163165.CrossRefGoogle ScholarPubMed
127.Felder, RA, Blecher, M, Schoelkopf, L. Renal dopamine recep tors during maturation. Pediatr Res 1983; 17: 148A. [Abstract”Google Scholar
128.Giradin, E, Berner, M, Rouge, JC, Rivest, RW, Friedhi, B, Paunier, L. Effect of low dose dopamine on hemodynamic and renal function in children. Pediatr Res 1989; 26: 200203.CrossRefGoogle Scholar
129. Matson JR. Stokes, JB, Robihlard, JE. Effects of inhibition of prostaglandin synthesis on fetal renal function. Kidney Inter national 1981; 20: 621627.Google Scholar
130.Robillard, JE, Nakamura, KT. Hormonal regulation of renal function during development. Biol Neonate 1988; 53: 201211.CrossRefGoogle ScholarPubMed
131.Rigden, SPA, Barratt, TM, Dillon, JJ, deLeval, M, Stark, J. Acute renal failure complicating cardiopulmonary bypass surgery. Arch Dis Child 1982; 57: 425430.CrossRefGoogle ScholarPubMed
132.Hencz, P, Deverall, PB, Crew, AD, Steel, AE, Mearns, AJ. Hyperuricemia of infants and children: a complication of open heart surgery. J Pediatr 1979; 94: 774776.CrossRefGoogle ScholarPubMed
133.Rigden, SP, Dillon, MJ, Kind, PR, de Lava, IM, Stark, J, Barrart, TM. The beneficial effect of mannitol on postoperative renal function in children undergoing cardiopulmonary bypass surgery. Clin Nephrol 1984; 21: 148151.Google ScholarPubMed
134.Avery, GA, Fletcher, AB. Special feeding techniques in the newborn and premature infant. In: Avery, GA (ed). Neonatology. Lippincott, Philadelphia, 1987, pp 12001229.Google Scholar
135.Adamkin, DH. Nutrition in the very low birth weight infants. Clin Perinatol 1986; 16: 419444.CrossRefGoogle Scholar
136.Albes, JM, Schistek, R, Baier, R, Unger, F. Intestinal ischemia associated with cardio-pulmonary-bypass surgery: a life threat ening complication. J Cardiovasc Surg 1991; 32: 527533.Google Scholar
137.Allen, KB, Salam, AA, Lumsden, AB. Acute mesenteric ischemia after cardiopulmonary bypass. J Vasc Surg 1992; 16: 391395.CrossRefGoogle ScholarPubMed
138.West, K, Rescorla, FJ, Grosfeld, JL, Vane, DW. Pneumatosis intestinalis in children beyond the neonatal period. J Pediatr Surg 1989; 24: 818822.CrossRefGoogle ScholarPubMed
139.Nowiki, P. Intestinal ischemia and necrotizing enterocolitis. J Pediatrics 1990; 117: 514519.Google Scholar
140.Kosloske, AM, Musemeche, CA. Necrotizing enterocolitis of the neonate. Clin Perinatol 1989; 16: 97111.CrossRefGoogle ScholarPubMed