Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T09:13:57.521Z Has data issue: false hasContentIssue false

Left ventricular dysfunction in Duchenne muscular dystrophy

Published online by Cambridge University Press:  22 January 2020

Katherine A. James*
Affiliation:
Colorado School of Public Health, University of Colorado, Aurora, CO, USA
Jane Gralla
Affiliation:
Department of Pediatrics, University of Colorado, Aurora, CO, USA
Leslie A. Ridall
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
ThuyQuynh N. Do
Affiliation:
National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
Angela S. Czaja
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
Peter M. Mourani
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
Emma Ciafaloni
Affiliation:
Department of Neurology, University of Rochester, Rochester, NY, USA
Christopher Cunniff
Affiliation:
Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
Jennifer Donnelly
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
Joyce Oleszek
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
Shree Pandya
Affiliation:
Department of Neurology, University of Rochester, Rochester, NY, USA
Elinora Price
Affiliation:
Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
Michele L. Yang
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
Scott R. Auerbach
Affiliation:
Children’s Hospital Colorado, Aurora, CO, USA
*
Author for correspondence: K. A. James, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, 13001 E 17th PL MS B119 Bldg 500 3rd FLR, Aurora, CO 80045, USA. Tel: 303-724-8169; Fax: 303.724.4620; E-mail: [email protected]

Abstract

Background:

Duchenne muscular dystrophy is associated with progressive cardiorespiratory failure, including left ventricular dysfunction.

Methods and Results:

Males with probable or definite diagnosis of Duchenne muscular dystrophy, diagnosed between 1 January, 1982 and 31 December, 2011, were identified from the Muscular Dystrophy Surveillance Tracking and Research Network database. Two non-mutually exclusive groups were created: patients with ≥2 echocardiograms and non-invasive positive pressure ventilation-compliant patients with ≥1 recorded ejection fraction. Quantitative left ventricular dysfunction was defined as an ejection fraction <55%. Qualitative dysfunction was defined as mild, moderate, or severe. Progression of quantitative left ventricular dysfunction was modelled as a continuous time-varying outcome. Change in qualitative left ventricle function was assessed by the percentage of patients within each category at each age. Forty-one percent (n = 403) had ≥2 ejection fractions containing 998 qualitative assessments with a mean age at first echo of 10.8 ± 4.6 years, with an average first ejection fraction of 63.1 ± 12.6%. Mean age at first echo with an ejection fraction <55 was 15.2 ± 3.9 years. Thirty-five percent (140/403) were non-invasive positive pressure ventilation-compliant and had ejection fraction information. The estimated rate of decline in ejection fraction from first ejection fraction was 1.6% per year and initiation of non-invasive positive pressure ventilation did not change this rate.

Conclusions:

In our cohort, we observed that left ventricle function in patients with Duchenne muscular dystrophy declined over time, independent of non-invasive positive pressure ventilation use. Future studies are needed to examine the impact of respiratory support on cardiac function.

Type
Original Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bushby, K, Finkel, R, Birnkrant, DJ, et al.Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2018; 17: 347361.Google Scholar
Petrof, BJ, Shrager, JB, Stedman, HH, et al.Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 1993; 90: 37103714.10.1073/pnas.90.8.3710CrossRefGoogle ScholarPubMed
Evans, NP, Miayak, SA, Robertson, JL, et al.Dysregulated intracellular signaling and inflammatory gene expression during initial disease onset in Duchenne muscular dystrophy. Am J Phys Med Rehabil 2009; 88: 502522.CrossRefGoogle ScholarPubMed
Wong, BL, Christopher, C.Corticosteroids in Duchenne muscular dystrophy: a reappraisal. J Child Neurol 2002; 17: 183190.CrossRefGoogle ScholarPubMed
Dubowitz, V.The ‘‘new’’ myopathies. Neuropediatrics 1969; 1: 137148.10.1055/s-0028-1091869CrossRefGoogle Scholar
Tandon, A, Villa, CR, Hor, KN, et al.Myocardial fibrosis burden predicts left ventricular ejection fraction and is associated with age and steroid treatment duration in Duchenne muscular dystrophy. J Am Heart Assoc 2015; 4: e001338.CrossRefGoogle ScholarPubMed
Eagle, M, Baudouin, SV, Chandler, C, et al.Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscular Disorders 2002; 12: 926929.10.1016/S0960-8966(02)00140-2CrossRefGoogle ScholarPubMed
Gomez-Merino, E, Bach, JR. Duchenne muscular dystrophy: prolongation of life by noninvasive ventilation and mechanically assisted coughing. Am J Phys Med Rehabil 2002; 81: 411415.CrossRefGoogle ScholarPubMed
Ishikawa, Y, Miura, T, Ishikawa, Y, et al.Duchenne muscular dystrophy: survival by cardio-respiratory interventions. Neuromusc Disord 2011; 21: 4751.CrossRefGoogle ScholarPubMed
Finsterer, J.Cardiopulmonary support in Duchenne muscular dystrophy. Lung 2006; 184: 205215.10.1007/s00408-005-2584-xCrossRefGoogle ScholarPubMed
Toussaint, M, Soudon, P, Kinnear, W. Effect of non-invasive ventilation on respiratory muscle loading and endurance in patients with Duchenne muscular dystrophy. Thorax 2008; 63: 430434.10.1136/thx.2007.084574CrossRefGoogle ScholarPubMed
Hamada, S, Ishikawa, Y, Aoyagi, T, et al.Indicators for ventilator use in Duchenne muscular dystrophy. Respir Med 2011; 105: 625629.10.1016/j.rmed.2010.12.005CrossRefGoogle ScholarPubMed
Judge, DP, Kass, DA, Thompson, WR, Wagner, KR. Pathophysiology and therapy of cardiac dysfunction in Duchenne muscular dystrophy. Am J Cardiovasc Drugs 2011; 11: 287294.CrossRefGoogle ScholarPubMed
Nigro, G, Comi, LI, Politano, L, Bain, RJI. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 1990; 26: 271277.10.1016/0167-5273(90)90082-GCrossRefGoogle ScholarPubMed
Fayssoil, A, Nardi, O, Orlikowski, D, Annane, D. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail Rev 2010; 15: 103107.CrossRefGoogle ScholarPubMed
Spurney, CF. Cardiomyopathy of Duchenne muscular dystrophy: current understand and future directions. Muscle Nerve 2011; 44: 819.CrossRefGoogle ScholarPubMed
Miller, LA, Romitti, PA, Cunniff, C, et al.The Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet): surveillance methodology. Birth Defects Res 2006; 76: 793797.CrossRefGoogle ScholarPubMed
Matthews, KD, Cunniff, C, Kantamnent, JR, et al.Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet): case definition in surveillance for childhood-onset Duchenne/Becker muscular dystrophy. J Child Neurol 2010; 25: 10981102.10.1177/0883073810371001CrossRefGoogle Scholar
Connuck, DM, Sleeper, LA, Colan, SD, et al.Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the pediatric cardiomyopathy registry. Am Heart J 2008; 155: 9981005.CrossRefGoogle ScholarPubMed
Barber, BJ, Andrews, JG, Lu, Z, et al.Oral corticosteroids and onset of cardiomyopathy in Duchenne muscular dystrophy. J Pediatr 2013; 163: 10801084.CrossRefGoogle ScholarPubMed
Silva, MC, Mahalhaes, TA, Alves Meira, ZM, et al.Myocardial fibrosis progression in Duchenne and Becker muscular dystrophy. JAMA Cardiol 2017; 2: 190199.CrossRefGoogle ScholarPubMed
Gudmundsson, P, Rydberg, E, Winter, R, Willenheimer, R. Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol 2005; 101: 209212.10.1016/j.ijcard.2004.03.027CrossRefGoogle ScholarPubMed
Birnkrant, DJ, Ashwath, ML, Noritz, GH, et al.Cardiac and pulmonary function variability in Duchenne/Becker muscular dystrophy: an initial report. J Child Neurol 2010; 25: 11101115.CrossRefGoogle Scholar
Roberto, R, Fritz, A, Hagar, Y, et al.The natural history of cardiac and pulmonary function decline in patients with Duchenne muscular dystrophy. Spine 2011; 36: E1009E1017.CrossRefGoogle ScholarPubMed
Humbertclaude, V, Hamroun, D, Bezzou, K, et al.Motor and respiratory heterogeneity in Duchenne patients: implication for clinical trials. Eur J Pediatr Neurol 2012; 16: 149160.10.1016/j.ejpn.2011.07.001CrossRefGoogle ScholarPubMed
Romfh, A, McNally, EM. Cardiac assessment in Duchenne and Becker muscular dystrophies. Curr Heart Fail Rep 2010; 7: 212218.10.1007/s11897-010-0028-2CrossRefGoogle ScholarPubMed
Romitti, PA, Zhu, Y, Puzhankara, S, et al.; on behalf of the MD STARnet. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics 2015; 135: 513521. doi:10.1542/peds.2014-2044.CrossRefGoogle ScholarPubMed
Duiverman, ML, Wempe, JB, Bladder, G, et al.Two-year home-based nocturnal noninvasive ventilation added to rehabilitation in chronic obstructive pulmonary disease patients: a randomized controlled trial. Resp Res 2011; 12: 112119.10.1186/1465-9921-12-112CrossRefGoogle ScholarPubMed
Tandon, A, Jefferies, JL, Villa, CR, et al.Dystrophin genotype-cardiac phenotype correlations in Duchenne and Becker muscular dystrophies using cardiac magnetic resonance imaging. Am J Cardiol 2015; 115: 967971.CrossRefGoogle ScholarPubMed
Fitzmaurice, GM, Ravidchandran, C. A primer in longitudinal data analysis. Circulation 2008; 118: 20052010.10.1161/CIRCULATIONAHA.107.714618CrossRefGoogle ScholarPubMed
Schram, G, Fournier, A, Leduc, H, et al. All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in Duchenne muscular dystrophy. JACC 2013; 61: 948954.10.1016/j.jacc.2012.12.008CrossRefGoogle ScholarPubMed
Duboc, D, Meune, C, Pierre, B, et al.Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am Heart J 2007; 154: 596602.10.1016/j.ahj.2007.05.014CrossRefGoogle Scholar
Birnkrant, DJ, Bushby, K, Bann, CM, et al.Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018; 17: 251267.10.1016/S1474-4422(18)30024-3CrossRefGoogle Scholar
McNally, EM, Kaltman, JR, Benson, DW, et al.Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation 2015; 131: 15901598.10.1161/CIRCULATIONAHA.114.015151CrossRefGoogle Scholar
Wittlieb-Weber, CA, Pantea, C, Krikov, S, et al.Cardiovascular health supervision for Duchenne Muscular Dystrophy; data from the MD STARnet. Progr Pediatr Cardiol 2018; 48: 98104.CrossRefGoogle Scholar