Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-25T08:54:49.630Z Has data issue: false hasContentIssue false

Genetic dilated cardiomyopathy with inflammation in an infant that responded to immunosuppressive therapy evaluated using cardiovascular magnetic resonance

Published online by Cambridge University Press:  12 April 2024

Hiromitsu Shirozu*
Affiliation:
Department of Pediatric Cardiology, Fukuoka Children’s Hospital, Fukuoka, Japan
Yuichi Ishikawa
Affiliation:
Department of Pediatric Cardiology, Fukuoka Children’s Hospital, Fukuoka, Japan
Nobuhiko Kan
Affiliation:
Department of Pediatric Cardiology, Fukuoka Children’s Hospital, Fukuoka, Japan
*
Corresponding author: Hiromitsu Shirozu; Email: [email protected]

Abstract

Cardiovascular magnetic resonance T1 and T2 mapping reflects inflammation, fibrosis, and myocardial oedema. However, its application in infants remains uncertain. Herein, we report a three-month-old boy with dilated cardiomyopathy successfully treated with steroids. Cardiovascular magnetic resonance was useful for diagnosis based on the elevated native T1, T2, and extracellular volume and evaluation of response to immunosuppressive therapy in infantile inflammatory dilated cardiomyopathy.

Type
Brief Report
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bozkurt, B, Colvin, M, Cook, J, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 2016; 134: e579e646.10.1161/CIR.0000000000000455CrossRefGoogle ScholarPubMed
Ferreira, VM, Schulz-Menger, J, Holmvang, G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 2018; 72: 31583176.10.1016/j.jacc.2018.09.072CrossRefGoogle ScholarPubMed
Merken, J, Hazebroek, M, Van Paassen, P, et al. Immunosuppressive therapy improves both short- and long-term prognosis in patients with virus-negative nonfulminant inflammatory cardiomyopathy. Circ Heart Fail 2018; 11: e004228.10.1161/CIRCHEARTFAILURE.117.004228CrossRefGoogle Scholar
Camargo, PR, Snitcowsky, R, da Luz, PL, et al. Favorable effects of immunosuppressive therapy in children with dilated cardiomyopathy and active myocarditis. Pediatr Cardiol 1995; 16: 6168.10.1007/BF00796819CrossRefGoogle ScholarPubMed
Popa, MA, Klingel, K, Hadamitzky, M, et al. An unusual case of severe myocarditis in a genetic cardiomyopathy: a case report. Eur Heart J Case Rep 2020; 4: 17.10.1093/ehjcr/ytaa124CrossRefGoogle Scholar
dem Siepen, FAus, Buss, SJ, Messroghli, D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015; 16: 210216.10.1093/ehjci/jeu183CrossRefGoogle Scholar
Al-Wakeel-Marquard, N, Seidel, F, Herbst, C, et al. Diffuse myocardial fibrosis by T1 mapping is associated with heart failure in pediatric primary dilated cardiomyopathy. Int J Cardiol 2021; 333: 219225.10.1016/j.ijcard.2021.03.023CrossRefGoogle ScholarPubMed
Ishikawa, Y, Urabe, H, Yamada, Y, et al. Normal ventricular and regional blood flow volumes and native T1 values in healthy Japanese children obtained from comprehensive cardiovascular magnetic resonance imaging. Int Heart J 2023; 64: 663671.10.1536/ihj.23-022CrossRefGoogle ScholarPubMed