Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-05-03T04:24:30.989Z Has data issue: false hasContentIssue false

Effect of standard intravenous immunoglobulin therapy on Kawasaki disease predicted by long non-coding ribonucleic acid small nucleolar RNA host gene 5 and microRNA-27a

Published online by Cambridge University Press:  28 April 2025

Shangming Chen
Affiliation:
Hospital of Nantong University, Nantong, Jiangsu Province, China
Haiying Huang*
Affiliation:
Hospital of Nantong University, Nantong, Jiangsu Province, China
*
Corresponding author: Haiying Huang; Email: [email protected]

Abstract

Background:

Kawasaki disease, an acute systemic small- and medium-vessel vasculitis, is mostly detected in children under 5 years old.

Objective:

We aimed to explore the predictive value of long non-coding ribonucleic acid small nucleolar RNA host gene 5 (SNHG5) and microRNA (miRNA)-27a for the effect of standard intravenous immunoglobulintherapy on children with Kawasaki disease.

Methods:

The study included 182 children undergoing standard intravenous immunoglobulin therapy for Kawasaki disease and another 182 healthy children receiving physical examinations as a control group. LncRNA SNHG5 and miRNA-27a expression levels were determined at admission.

Results:

The ineffective group had higher levels of interleukin-6, C-reactive protein, procalcitonin, lncRNA SNHG5, and miRNA-27a and Kobayashi score than those of the effective group (P < 0.05). Multivariate regression analysis showed that Kobayashi score, interleukin-6, C-reactive protein, procalcitonin, lncRNA SNHG5, and miRNA-27a were associated with the treatment outcomes (P < 0.05). LncRNA SNHG5 and miRNA-27a levels were positively correlated with Kobayashi score, interleukin-6, receiver operating characteristic and procalcitonin levels (r > 0, P < 0.05). High Kobayashi score and levels of interleukin-6, c-reactive roe, procalcitonin, lncRNA SNHG5, and miRNA-27a were influencing factors for treatment failure (odds ratio > 1, P < 0.05). The areas under the curves of lncRNA SNHG5, miRNA-27a, and their combination were 0.757, 0.766, and 0.831, respectively.

Conclusion:

LncRNA SNHG5 and miRNA-27a are highly expressed in children with Kawasaki disease, and their levels are closely correlated with the efficacy of standard immunoglobulin therapy.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sugahara-Tobinai, A, Inui, M, Metoki, T, et al. Augmented ILT3/LILRB4 expression of peripheral blood antibody secreting cells in the acute phase of kawasaki disease. Pediatr Infect Dis J 2019; 38: 431438. DOI: 10.1097/INF.0000000000002259.CrossRefGoogle ScholarPubMed
Kitano, N, Takeuchi, T, Suenaga, T, et al. Seasonal variation in epidemiology of kawasaki disease-related coronary artery Abnormalities in Japan, 1999-2017. J Epidemiol 2021; 31: 132138. DOI: 10.2188/jea.JE20190189.CrossRefGoogle ScholarPubMed
Philip, S, Jindal, A, Krishna Kumar, R. An update on understanding the pathophysiology in kawasaki disease: possible role of immune complexes in coronary artery lesion revisited. Int J Rheum Dis 2023; 26: 14531463. DOI: 10.1111/1756-185X.14816.CrossRefGoogle ScholarPubMed
Ahmed, N, Pal, P, Azad, SM, Ghosh, A, Banerjee, P, Sarkar, SD. Risk factors in IVIG-resistant kawasaki disease and correlation with Japanese scoring systems - a study from eastern India. Clin Rheumatol 2023; 42: 145150. DOI: 10.1007/s10067-022-06344-3.CrossRefGoogle ScholarPubMed
Wang, H, Song, Y, Mu, J, Shang, J, Wang, J, Ruan, L. Left ventricular systolic dyssynchrony in patients with kawasaki disease: a real-time three-dimensional echocardiography study. Int J Cardiovasc Imaging 2020; 36: 19411951. DOI: 10.1007/s10554-020-01909-2.CrossRefGoogle ScholarPubMed
Liu, C, Wu, J. Value of blood inflammatory markers for predicting intravenous immunoglobulin resistance in kawasaki disease: a systematic review and meta-analysis. Front Pediatr 2022; 10: 969502. DOI: 10.3389/fped.2022.969502.CrossRefGoogle ScholarPubMed
Matsuura, M, Sugawara, D, Makita, E, et al. Stratified therapy for kawasaki disease using a new scoring system to predict the response to a lower dose of intravenous immunoglobulin therapy. Cardiol Young 2022; 32: 405409. DOI: 10.1017/S1047951121002237.CrossRefGoogle ScholarPubMed
Kawasaki, Y, Miyamoto, M, Oda, T, et al. The novel lncRNA CALIC upregulates AXL to promote colon cancer metastasis. EMBO Rep 2019; 20: e47052. DOI: 10.15252/embr.201847052.CrossRefGoogle ScholarPubMed
Kawasaki, H, Takeuchi, T, Ricciardiello, F, et al. Definition of miRNA signatures of nodal metastasis in LCa: miR-449a targets notch genes and suppresses cell migration and invasion. Mol Ther Nucleic Acids 2020; 20: 711724. DOI: 10.1016/j.omtn.2020.04.006.CrossRefGoogle ScholarPubMed
Guo, C, Hua, Y, Qian, Z. Differentially expressed genes, lncRNAs, and competing endogenous RNAs in kawasaki disease. PeerJ 2021; 9: e11169. DOI: 10.7717/peerj.11169.CrossRefGoogle ScholarPubMed
Wang, J, Li, J, Qiu, H, et al. Association between miRNA-196a2 rs11614913 T>C polymorphism and kawasaki disease susceptibility in southern chinese children. J Clin Lab Anal 2019; 33: e22925. DOI: 10.1002/jcla.22925.CrossRefGoogle ScholarPubMed
Kainth, R, Shah, P. Kawasaki disease: origins and evolution. Arch Dis Child 2021; 106: 413414. DOI: 10.1136/archdischild-2019-317070.CrossRefGoogle ScholarPubMed
Watanabe, Y, Ikeda, H, Watanabe, T. Differences in the clinical characteristics of kawasaki disease between older and younger children (2015-2019): a single-center, retrospective study. J Pediatr 2023; 253: 266269. DOI: 10.1016/j.jpeds.2022.09.056.CrossRefGoogle ScholarPubMed
Kotoku, A, Aso, K, Yamada, T, Shimizu, N, Mimura, H. Visualizing high-intensity thrombosis with plaque imaging of coronary aneurysm in kawasaki disease. Pediatr Int 2021; 63: 14051407. DOI: 10.1111/ped.14847.CrossRefGoogle ScholarPubMed
Tanaka, A, Inoue, M, Hoshina, T, Koga, H. Correlation of coronary artery Abnormalities with fever pattern in patients with kawasaki disease. J Pediatr 2021; 236: 95100. DOI: 10.1016/j.jpeds.2021.05.020.CrossRefGoogle ScholarPubMed
Yang, Y, Yang, C, Wang, L, et al. Research on early identification model of intravenous immunoglobulin resistant Kawasaki disease based on gradient boosting decision tree. Pediatr Infect Dis J 2023; 42: 537542. DOI: 10.1097/INF.0000000000003919.CrossRefGoogle ScholarPubMed
Ahn, JG, Bae, Y, Shin, D, Nam, J, Kim, KY, Kim, DS. HMGB1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Rheumatology 2019; 58: 770775. DOI: 10.1093/rheumatology/key356.CrossRefGoogle ScholarPubMed
Wu, X, Lan, W, Chen, Q, Dong, Y, Liu, J, Peng, W. Inferring lncRNA-disease associations based on graph autoencoder matrix completion. Comput Biol Chem 2020; 87: 107282. DOI: 10.1016/j.compbiolchem.2020.107282.CrossRefGoogle ScholarPubMed
Li, W, Wang, S, Xu, J, Xiang, J. Inferring latent microRNA-disease associations on a gene-mediated tripartite heterogeneous multiplexing network. IEEE/ACM Trans Comput Biol Bioinform 2022; 19: 31903201. DOI: 10.1109/TCBB.2022.3143770.CrossRefGoogle ScholarPubMed
Xie, Z, Wang, C, Li, L et al. lncRNA-AC130710/miR-129-5p/mGluR1 axis promote migration and invasion by activating PKCα-MAPK signal pathway in melanoma. Open Med 2022; 17: 16121622. DOI: 10.1515/med-2022-0587.CrossRefGoogle ScholarPubMed
Xiang, W, Lv, L, Zhou, G, et al. The lncRNA SNHG5-mediated miR-205-5p downregulation contributes to the progression of clear cell renal cell carcinoma by targeting ZEB1. Cancer Med 2020; 9: 42514264. DOI: 10.1002/cam4.3052.CrossRefGoogle Scholar
Li, YH, Hu, YQ, Wang, SC, Li, Y, Chen, DM. LncRNA SNHG5: a new budding star in human cancers. Gene 2020; 749: 144724. DOI: 10.1016/j.gene.2020.144724.CrossRefGoogle ScholarPubMed
Chen, H, Wang, X, Yan, X, Cheng, X, He, X, Zheng, W. RETRACTED: lncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFκB. Int Immunopharmacol 2018; 55: 6976. DOI: 10.1016/j.intimp.2017.11.038.CrossRefGoogle ScholarPubMed
Kobayashi, M, Matsumoto, Y, Ohya, M, Harada, K, Kanno, H. Histologic and immunohistochemical evaluation of infiltrating inflammatory cells in Kawasaki disease arteritis lesions. Appl Immunohistochem Mol Morphol 2021; 29: 6267. DOI: 10.1097/PAI.0000000000000860.CrossRefGoogle ScholarPubMed
Wang, M, Wei, J, Shang, F, Zang, K, Zhang, P. Down-regulation of lncRNA SNHG5 relieves sepsis-induced acute kidney injury by regulating the miR-374a-3p/TLR4/NF-κB pathway. J Biochem 2021; 169: 575583. DOI: 10.1093/jb/mvab008.CrossRefGoogle ScholarPubMed
Shen, Q, Zheng, J, Wang, X, Hu, W, Jiang, Y, Jiang, Y. LncRNA SNHG5 regulates cell apoptosis and inflammation by miR-132/PTEN axis in COPD. Biomed Pharmacother 2020; 126: 110016. DOI: 10.1016/j.biopha.2020.110016.CrossRefGoogle ScholarPubMed
Yasmeen, S, Kaur, S, Mirza, AH, Brodin, B, Pociot, F, Kruuse, C. MiRNA-27a-3p and miRNA-222-3p as novel modulators of phosphodiesterase 3a (PDE3A) in cerebral microvascular endothelial cells. Mol Neurobiol 2019; 56: 53045314. DOI: 10.1007/s12035-018-1446-5.CrossRefGoogle ScholarPubMed
Deng, K, Ren, C, Fan, Y et al. miR-27a is an important adipogenesis regulator associated with differential lipid accumulation between intramuscular and subcutaneous adipose tissues of sheep. Domest Anim Endocrinol 2020; 71: 106393. DOI: 10.1016/j.domaniend.2019.106393.CrossRefGoogle Scholar
Yeo, WS, Ng, QX. Distinguishing between typical Kawasaki disease and multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2. Med <a[9] class=“STATEMENTLINK. Medical Hypotheses 2020; 144: 110263. DOI: 10.1016/j.mehy.2020.110263.CrossRefGoogle Scholar
Pouletty, M, Borocco, C, Ouldali, N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis 2020; 79: 9991006. DOI: 10.1136/annrheumdis-2020-217960.CrossRefGoogle ScholarPubMed
Son, MB, Gauvreau, K, Tremoulet, AH, et al. Risk model development and validation for prediction of coronary artery aneurysms in Kawasaki disease in a North American population. J Am Heart Assoc 2019; 8: e011319. DOI: 10.1161/JAHA.118.011319.CrossRefGoogle Scholar
Nakamura, N, Muto, T, Masuda, Y, et al. Procalcitonin as a biomarker of unresponsiveness to intravenous immunoglobulin for kawasaki disease. Pediatric Infect Dis J 2020; 39: 857861. DOI: 10.1097/INF.0000000000002716.CrossRefGoogle ScholarPubMed