Article contents
Deep hypothermic circulatory arrest in cyanotic piglets is associated with increased neuronal necrosis
Published online by Cambridge University Press: 23 December 2020
Abstract
The contribution of neonatal cyanosis, inherent to cyanotic congenital heart disease, to the magnitude of neurologic injury during deep hypothermic circulatory arrest has not been fully delineated. This study investigates the impact of cyanosis and deep hypothermic circulatory arrest on brain injury.
Neonatal piglets were randomised to placement of a pulmonary artery to left atrium shunt to create cyanosis or sham thoracotomy. At day 7, animals were randomised to undergo deep hypothermic circulatory arrest or sham. Arterial oxygen tension and haematocrit were obtained. Neurobehavioural performance was serially assessed. The animals were sacrificed on day 14. Brain tissue was assessed for neuronal necrosis using a 5-point histopathologic score.
Four experimental groups were analysed (sham, n = 10; sham + deep hypothermic circulatory arrest, n = 8; shunt, n = 9; shunt + deep hypothermic circulatory arrest, n = 7). Cyanotic piglets had significantly higher haematocrit and lower partial pressure of oxygen at day 14 than non-cyanotic piglets. There were no statistically significant differences in neurobehavioural scores at day 1. However, shunt + deep hypothermic circulatory arrest piglets had evidence of greater neuronal injury than sham animals (median (range): 2 (0–4) versus 0 (0–0), p = 0.02).
Cyanotic piglets undergoing deep hypothermic circulatory arrest had increased neuronal injury compared to sham animals. Significant injury was not seen for either cyanosis or deep hypothermic circulatory arrest alone relative to shams. These findings suggest an interaction between cyanosis and deep hypothermic circulatory arrest and may partially explain the suboptimal neurologic outcomes seen in children with cyanotic heart disease who undergo deep hypothermic circulatory arrest.
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
Footnotes
These authors are first authors on this review with a shared first co-authorship.
References
- 4
- Cited by