Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T22:44:02.425Z Has data issue: false hasContentIssue false

Consensus document on optimal management of patients with common arterial trunk

Published online by Cambridge University Press:  21 May 2021

Mark G. Hazekamp*
Affiliation:
Department of Cardiothoracic Surgery, University Hospital Leiden, Leiden, Netherlands
David J. Barron
Affiliation:
Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Canada
Joanna Dangel
Affiliation:
Department of Perinatal Cardiology and Congenital Anomalies, Centre of Postgraduate Medical Education, Warsaw, Poland
Tessa Homfray
Affiliation:
Department of Medical Genetics, Royal Brompton and Harefield hospitals NHS Trust, London, UK
Monique R.M. Jongbloed
Affiliation:
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
Inga Voges
Affiliation:
Department for Congenital Cardiology and Pediatric Cardiology, University Medical Center of Schleswig-Holstein, Kiel, Germany
*
Author for correspondence: M.G. Hazekamp, Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. Tel: +31-715262-348. E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Document Reviewers: Robert H. Anderson (UK), Emre Belli (France), Hannah Rosemary Bellsham-evell (UK), Ulrike Herberg (Germany), Joachim O.M. Photiadis (Germany), Serban C. Stoica (UK), Yves d’Udekem (Australia)

*

All authors contributed equally to this work.

This Article has been co-published with permission in the European Journal of Cardio-Thoracic Surgery and in Cardiology in the Young. All rights reserved in respect of European Journal of Cardio-Thoracic Surgery, ©2020 The Authors.

References

Sousa-Uva, M, Head, SJ, Thielmann, M, et al. Methodology manual for European Association for Cardio- Thoracic Surgery (EACTS) clinical guidelines. Eur J Cardiothorac Surg 2015; 48: 809816.Google ScholarPubMed
Ta-Shma, A, Pierri, CL, Stepensky, P, et al. Isolated truncus arteriosus associated with a mutation in the plexin-D1 gene. Am J Med Genet A 2013; 161: 31153120.CrossRefGoogle Scholar
Collet, RW, Edwards, JE. Persistent truncus arteriosus; a classification according to anatomic types. Surg Clin North Am 1949; 29: 12451270.CrossRefGoogle Scholar
Van Praagh, R, Van Praagh, S. The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol 1965; 16: 406425.CrossRefGoogle ScholarPubMed
Calder, L, Van Praagh, R, Van Praagh, S, et al. Truncus arteriosus communis. Clinical, angiocardiographic and pathologic findings in 100 patients. Am Heart J 1976; 92: 2338.CrossRefGoogle ScholarPubMed
Orphanet. Truncus arteriosus; Version 5.36.0, 2020. Retrieved November 21, 2020, from http://www.orpha. net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=3384Google Scholar
Lindinger, A, Schwedler, G, Hense, HW. Prevalence of congenital heart defects in newborns in Germany: results of the first registration year of the PAN Study (July 2006 toJune 2007). Klin Padiatr 2010; 222: 321326.CrossRefGoogle Scholar
Volpe, P, Paladini, D, Marasini, M, et al. Common arterial trunk in the fetus: characteristics, associations, and outcome in a multicentre series of 23 cases. Heart 2003; 89: 14371441.CrossRefGoogle Scholar
Boudjemline, Y, Fermont, L, Le Bidois, J, et al. Prenatal diagnosis of conotruncal heart diseases. Results in 337 cases. Arch Mal CoeurVaiss 2000; 93: 583–536.Google ScholarPubMed
Pierpont, ME, Gobel, JW, Moller, JH, Edwards, JE. Cardiac malformations in relatives of children with truncus arteriosus or interruption of the aortic arch. Am J Cardiol 1988; 61: 423427.CrossRefGoogle ScholarPubMed
Yamagishi, H. Human genetics of truncus arteriosus. In: Rickert-Sperling, S, Kelly, R, Driscoll, D (eds). Congenital Heart Diseases: The Broken Heart. Springer, Vienna, 2016: 559567.CrossRefGoogle Scholar
Nora, JJ, Nora, AH. The evolution of specific genetic and environmental counseling in congenital heart disease. Circulation 1978; 57: 205213.CrossRefGoogle Scholar
Patel, A, Costello, JM, Backer, CL, et al. Prevalence of noncardiac and genetic abnormalities in neonates undergoing cardiac operations: analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg 2016; 102: 16071614.CrossRefGoogle Scholar
Ferencz, C, Correa-Villasenor, A, Loffredo, CA (eds). Genetic and Environmental Risk Factors of Major Cardiovascular Malformations: The Baltimore-Washington Infant Study: 1981–1989. Futura Publishing Co., Armonk, 1997.Google Scholar
Iserin, L, de Lonlay, P, Viot, G, et al. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr 1998; 157: 881884.CrossRefGoogle ScholarPubMed
Momma, K, Ando, M, Matsuoka, R. Truncus arteriosus communis associated with chromosome 22q11 deletion. J Am Coll Cardiol 1997; 30: 10671071.CrossRefGoogle ScholarPubMed
Digilio, MC, Marino, B, Giannotti, A, Mingarelli, R, Dallapiccola, B. Guidelines for 22q11 deletion screening of patients with conotruncal defects. J Am Coll Cardiol 1999; 33: 17461748.Google ScholarPubMed
Goldmuntz, E, Clark, BJ, Mitchell, LE, et al. Frequency of 22q11 deletions in patients with conotruncal defects. J Am CollCardiol 1998; 32: 492498.CrossRefGoogle ScholarPubMed
Marino, B, Digilio, M, Toscano, A. Common arterial trunk, DiGeorge syndrome and microdeletion 22q11. Prog Pediatr Cardiol 2002; 15: 917.CrossRefGoogle Scholar
Moscano, A, Marino, B, Digilio, MC, et al. Truncus arteriosus with discontinuity of the pulmonary arteries and DiGeorge phenotype G. Ital Cardiol 1998; 28: 7.Google Scholar
Marino, B, Digilio, MC, Dallapiccola, B. Severe truncal valve dysplasia: association with DiGeorge syndrome? Ann Thorac Surg 1998; 66: 980.Google ScholarPubMed
Digilio, MC, Angioni, A, De Santis, M, et al. Spectrum of clinical variability in familial deletion 22q11.2: from full manifestation to extremely mild clinical anomalies. Clin Genet 2003; 63: 308313.CrossRefGoogle ScholarPubMed
Sherer, DM, Dalloul, M, Pinard, V, Sheu, J, Abulafia, O. Fetal trisomy 8 mosaicism associated with truncus arteriosus Type I. Ultrasound Obstet Gynecol 2017; 50: 541542.CrossRefGoogle ScholarPubMed
Shaheen, R, Al Hashem, A, Alghamdi, MH, et al. Positional mapping of PRKD1, NRP1 and PRDM1 as novel candidate disease genes in truncus arteriosus. J Med Genet 2015; 52: 322329.CrossRefGoogle ScholarPubMed
Chao, CS, McKnight, KD, Cox, KL, Chang, AL, Kim, SK, Feldman, BJ. Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLoS One 2015; 10: e0118449.CrossRefGoogle ScholarPubMed
Huang, RT, Wang, J, Xue, S, et al. TBX20 loss-of- function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci 2017; 14: 323332.CrossRefGoogle ScholarPubMed
Wilson, JA. A description of a very unusual formation of the human heart. PhilosTrans R Soc L 1998; 18: 346.Google Scholar
Buchanan, A. Malformation of the heart: undivided truncus arteriosus. Trans Pathol Soc L 1964; 89: 1864.Google Scholar
Crupi, G, Macartney, FJ, Anderson, RH. Persistent truncus arteriosus. A study of 66 autopsy cases with special reference to definition and morphogenesis. Am J Cardiol 1977; 40: 569578.CrossRefGoogle ScholarPubMed
Anderson, RH, Chaudhry, B, Mohun, TJ, et al. Normal and abnormal development of the intrapericardial arterial trunks in man and mouse. Cardiovasc Res 2012; 95: 108115.CrossRefGoogle Scholar
Bartelings, MM, Gittenberger-de Groot, AC. Morphogenetic considerations on congenital malformations of the outflow tract. Part 1: common arterial trunk and tetralogy of Fallot. Int J Cardiol 1991; 32: 213230.CrossRefGoogle ScholarPubMed
Jacobs, ML, Anderson, RH. Rationalising the nomenclature of common arterial trunk. Cardiol Young 2012; 22: 639646.CrossRefGoogle ScholarPubMed
Bartelings, MM, Gittenberger-de Groot, AC. Morphogenetic considerations on congenital malformations of the outflow tract. Part 2: complete transposition of the great arteries and double outlet right ventricle. Int J Cardiol 1991; 33: 526.CrossRefGoogle ScholarPubMed
Anderson, RH, Webb, S, Brown, NA, Lamers, W, Moorman, A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 2003; 89: 11101118.CrossRefGoogle ScholarPubMed
Kirby, ML, Gale, TF, Stewart, DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983; 220: 10591061.CrossRefGoogle ScholarPubMed
Poelmann, RE, Mikawa, T, Gittenberger-de Groot, AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn 1998; 212: 373384.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Poelmann, RE, Gittenberger-de Groot, AC, Biermans, MWM, et al. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. Evodevo 2017; 8: 9.CrossRefGoogle ScholarPubMed
Anderson, RH, Mohun, TJ, Spicer, DE, et al. Myths and realities relating to development of the arterial valves. J Cardiovasc Dev Dis 2014; 1: 177200.CrossRefGoogle Scholar
Gittenberger-de Groot, AC, Bartelings, MM, Bogers, JJC, Boot, MJ, Poelmann, RE. The embryology of common arterial trunk. Prog Pediatr Cardiol 2002; 15: 18.CrossRefGoogle Scholar
Conway, SJ, Henderson, DJ, Kirby, ML, Anderson, RH, Copp, AJ. Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Cardiovasc Res 1997; 36: 163173.CrossRefGoogle ScholarPubMed
Gruber, PJ, Kubalak, SW, Pexieder, T, Sucov, HM, Evans, RM, Chien, KR. RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J Clin Invest 1996; 98: 13321343.CrossRefGoogle ScholarPubMed
Baardman, ME, Zwier, MV, Wisse, LJ, et al. Common arterial trunk and in Lrp2 knock out mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 2016; 9: 413425.Google ScholarPubMed
Feiner, L, Webber, AL, Brown, CB, et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 2001; 128: 30613070.CrossRefGoogle ScholarPubMed
Parisot, P, Mesbah, K, Théveniau-Ruissy, M, Kelly, RG. Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Res Clin Mol Teratol 2011; 91: 477484.CrossRefGoogle ScholarPubMed
Jacobs, ML. Congenital heart surgery nomenclature and database project: truncus arteriosus. Ann Thorac Surg 2000; 69: S50S55.CrossRefGoogle ScholarPubMed
Russell, HM, Jacobs, ML, Anderson, RH, et al. A simplified categorization for common arterial trunk. J Thorac Cardiovasc Surg 2011; 141: 645653.CrossRefGoogle ScholarPubMed
Gumbiner, CH, McManus, BM, Latson, LA. Associated occurrence of persistenttruncus arteriosus and asplenia. Pediatr Cardiol 1991; 12: 192195.CrossRefGoogle ScholarPubMed
Marino, B, Ballerini, L, Soro, A. Ventricular inversion with truncus arteriosus. Chest 1990; 98: 239241.CrossRefGoogle ScholarPubMed
Smith, A, McKay, R. Common arterial trunk with discordant atrioventricular connections. Cardiol Young 2000; 10: 145146.CrossRefGoogle ScholarPubMed
Bogers, AJJC, Bartelings, MM, Bökenkamp, R, et al. Common arterial trunk, uncommon coronary arterial anatomy. J Thorac Cardiovasc Surg 1993; 106: 11331137.CrossRefGoogle ScholarPubMed
Adachi, I, Seale, A, Uemura, H, McCarthy, KP, Kimberley, P, Ho, SY. Morphologic spectrum of truncal valvar origin relative to the ventricular septum: correlation with the size of ventricular septal defect. J Thorac Cardiovasc Surg 2009; 138: 12831289.CrossRefGoogle ScholarPubMed
Adachi, I, Uemura, H, McCarthy, KP, Seale, A, Ho, SY. Relationship between orifices of pulmonary and coronary arteries in common arterial trunk. Eur J Cardiothoracic Surg 2009; 35: 594599.CrossRefGoogle ScholarPubMed
Freedom, RM, Yoo, S. Common arterial trunk. In: Freedom, RM, Yoo, SJ, Mikailian, H, Williams, WG (eds). The Natural and Modified History of Congenital Heart Disease. Futura, Blackwell, Elmsford, NY, 2004: 5663.Google Scholar
Baggen, VJM, Connely, MS, Roos-Hesselink, JW. Truncus arteriosus. In: Gatzoulis, MA, Webb, GD, Daubeney, PE (eds). Diagnosis and Management of Adult Congenital Heart Disease, 3rd edn. Elsevier, Amsterdam, The Netherlands, 2018: 421428.CrossRefGoogle ScholarPubMed
Adachi, I, Ho, SY, Bartelings, MM, McCarthy, KP, Seale, A, Uemura, H. Common arterial trunk with atrioventricular septal defect: new observations pertinent to repair. Ann Thorac Surg 2009; 87: 14951499.CrossRefGoogle Scholar
Suzuki, A, Ho, SY, Anderson, RH, Deanfield, JE. Coronary arterial and sinusal anatomy in hearts with a common arterial trunk. Ann Thorac Surg 1989; 48: 792797.CrossRefGoogle ScholarPubMed
Butto, F, Lucas, RV Jr, Edwards, JE. Persistent truncus arteriosus: pathologic anatomy in 54 cases. Pediatr Cardiol 1986; 7: 95101.CrossRefGoogle ScholarPubMed
Rossiter, SJ, Silverman, JF, Shumway, NE. Patterns of pulmonary arterial supply in patients with truncus arteriosus. J Thorac Cardiovasc Surg 1978; 75: 7379.CrossRefGoogle ScholarPubMed
Oddens, JR, Bogers, AJ, Witsenburg, M, Bartelings, MM. Anatomy of the proximal coronary arteries as a risk factor in primary repair of common arterial trunk. J Cardiovasc Surg 1994; 35: 295299.Google ScholarPubMed
Veltman, CE, Beeres, SLMA, Kalkman, DN, et al. Variation in coronary anatomy in adult patients late after arterial switch operation: a computed tomography coronary angiography study. Ann Thorac Surg 2013; 96: 13901397.CrossRefGoogle ScholarPubMed
Anderson, KR, McGoon, DC, Lie, JT. Surgical significance of the coronary arterial anatomy in truncus arteriosus communis. AmJ Cardiol 1978; 41: 7681.CrossRefGoogle ScholarPubMed
Daskalopoulos, DA, Edwards, WD, Driscoll, DJ, Schaff, HV, Danielson, GK. Fatal pulmonary artery banding in truncus arteriosus with anomalous origin of circumflex coronary artery from right pulmonary artery. Am J Cardiol 1983; 52: 13631364.CrossRefGoogle ScholarPubMed
Angelini, P, Leachman, RD. Trunco-conal septal defects. An anatomic and embryologic discussion of common truncus and related malformations. Eur J Cardiol 1974; 2: 1122.Google ScholarPubMed
Carlo, WF, McKenzie, ED, Slesnick, TC. Root dilation in patients with truncus arteriosus. Congenit Heart Dis 2011; 6: 228233.CrossRefGoogle ScholarPubMed
Gutierrez, PS, Binotto, MA, Aiello, VD, Mansur, AJ. Chest pain in an adult with truncus arteriosus communis. Am J Cardiol 2004; 93: 272273.CrossRefGoogle Scholar
Momma, K, Matsuoka, R, Takao, A. Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr Cardiol 1999; 20: 97102.CrossRefGoogle Scholar
Sairam, S, Carvalho, JS. Early fetal echocardiography and anomaly scan in fetuses with increased nuchal translucency. Early Hum Dev 2012; 88: 269272.CrossRefGoogle ScholarPubMed
Carvalho, JS. Screening for heart defects in the first trimester of pregnancy: food for thought. Ultrasound Obstet Gynecol 2010; 36: 658660.CrossRefGoogle ScholarPubMed
Jicinska, H, Vlasin, P, Jicinsky, M, et al. Does first-trimester screening modify the natural history of congenital heart disease? Analysis of outcome of regional cardiac screening at 2 different time periods. Circulation 2017; 135: 10451055.CrossRefGoogle ScholarPubMed
Duke, C, Sharland, GK, Jones, AM, Simpson, JM. Echocardiographic features and outcome of truncus arteriosus diagnosed during fetal life. Am J Cardiol 2001; 88: 13791384.CrossRefGoogle ScholarPubMed
Huhta, JC. Diagnosis and treatment of foetal heart failure: foetal echocardiography and foetal hydrops. Cardiol Young 2015; 25: 100106.CrossRefGoogle ScholarPubMed
Karl, K, Heling, KS, Sarut Lopez, A, Thiel, G, Chaoui, R. Thymic-thoracic ratio in fetuses with trisomy 21, 18 or 13. Ultrasound Obstet Gynecol 2012; 40: 412417.CrossRefGoogle Scholar
Traisrisilp, K, Tongprasert, F, Srisupundit, K, Luewan, S, Sukpan, K, Tongsong, T. Prenatal differentiation between truncus arteriosus (Types II and III) and pulmonary atresia with ventricular septal defect. Ultrasound Obstet Gynecol 2015; 46: 564570.CrossRefGoogle ScholarPubMed
Allan, L, Dangel, J, Fesslova, V, et al.; Fetal Cardiology Working Group; Association for European Paediatric Cardiology. Recommendations for the practice of fetal cardiology in Europe. Cardiol Young 2004; 14: 109114.CrossRefGoogle ScholarPubMed
Peyvandi, S, Lupo, P, Garbarini, J, et al. 22q11.2 deletions in patients with conotruncal defects: data from 1,610 consecutive cases. Pediatr Cardiol 2013; 34: 16871694.CrossRefGoogle ScholarPubMed
Naimo, PS, Fricke, TA, Yong, MS, et al. Outcomes of truncus arteriosus repair in children: 35 years of experience from a single institution. Semin Thorac Cardiovasc Surg 2016; 28: 500511.CrossRefGoogle ScholarPubMed
Hellström-Westas, L, Hanseus, K, Jögi, P, Lundstrom, NR, Svenningsen, N. Long-distance transports of newborn infants with congenital heart disease. Pediatr Cardiol 2001; 22: 380384.CrossRefGoogle ScholarPubMed
Costello, JM, Pasquali, SK, Jacobs, JP, et al. Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the Society of Thoracic Surgeons (STS) Congenital Heart Surgery Database. Circulation 2014; 129: 25112517.CrossRefGoogle Scholar
Shamszad, P, Moore, RA, Ghanayem, N, Cooper, DS. Intensive care management of neonates with d-transposition of the great arteries and common arterial trunk. Cardiol Young 2012; 22: 755760.CrossRefGoogle ScholarPubMed
Colon, M, Anderson, RH, Weinberg, P, Mussatto, K, Bove, E, Friedman, AH. Anatomy, morphogenesis, diagnosis, management, and outcomes for neonates with common arterial trunk. Cardiol Young 2008; 18: 5262.CrossRefGoogle ScholarPubMed
Penny, D, Anderson, RH. Common arterial trunk. In: Andersen, RH, Baker, EJ, Penny, D, Redington, AN, Rigby, ML, Wernovski, G (eds). Pediatric Cardiology. Churchill Livingstone, Philadelphia, 2010: 859874.CrossRefGoogle Scholar
Yoo, S, Kim, YM, Bae, EJ, et al. Cardiac imaging in common arterial trunk. Prog Pediatr Cardiol 2002; 15: 4151.CrossRefGoogle Scholar
Nguyen, T, John, JB, Nardell, K, Gonzalez, JH, Timofeev, S, Marx, G. Echocardiography of common arterial trunk. Cardiol Young 2012; 22: 655663.CrossRefGoogle ScholarPubMed
Simpson, J, Lopez, L, Acar, P, et al. Threedimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 2017; 30: 127.CrossRefGoogle Scholar
Prakash, A, Powell, AJ, Geva, T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging 2010; 3: 112125.CrossRefGoogle ScholarPubMed
Han, BK, Rigsby, CK, Hlavacek, A, et al. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 2015; 9: 475492.CrossRefGoogle Scholar
Fogel, MA, Crawford, M. Cardiac magnetic resonance of the common arterial trunk and transposition of the great arteries. Cardiol Young 2012; 22: 677686.CrossRefGoogle ScholarPubMed
Hong, SH, Kim, YM, Lee, CK, Lee, CH, Kim, SH, Lee, SY. 3D MDCT angiography for the preoperative assessment of truncus arteriosus. Clin Imaging 2015; 39: 938944.CrossRefGoogle ScholarPubMed
Sharma, A, Priya, S, Jagia, P. Persistent truncus arteriosus on dual source CT. Jpn J Radiol 2016; 34: 486493.CrossRefGoogle ScholarPubMed
Stapleton, GE, Wilmot, I, Suh, EJ. Cardiac catheterisation of patients with common arterial trunk and transposition of the great arteries. Cardiol Young 2012; 22: 687690.CrossRefGoogle ScholarPubMed
Hosseinpour, AR, Shinebourne, EA. Assessment of operability for common arterial trunk without cardiac catheterisation. Cardiol Young 2005; 15: 241244.CrossRefGoogle ScholarPubMed
Kobrynski, LJ, Sullivan, KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 2007; 370: 14431452.CrossRefGoogle ScholarPubMed
McDonald, R, Dodgen, A, Goyal, S, et al. Impact of 22q11.2 deletion on the postoperative course of children after cardiac surgery. Pediatr Cardiol 2013; 34: 341347.CrossRefGoogle ScholarPubMed
Jatana, V, Gillis, J, Webster, B, Ades, L. Deletion of 22q11.2 syndrome— implications for the intensive care physician. Pediatr Crit Care Med 2007; 8: 459463.CrossRefGoogle ScholarPubMed
Shen, L, Gu, H, Wang, D, et al. Influence of chromosome 22q11.2 microdeletion on postoperative calcium level after cardiac correction surgery. Pediatr Cardiol 2011; 32: 904909.CrossRefGoogle ScholarPubMed
Mastropietro, CW, Amula, V, Sassalos, P, et al. Characteristics and operative outcomes for children undergoing repair of truncus arteriosus: a contemporary multicenter analysis. The Collaborative Research in Pediatric Cardiac Intensive Care Investigators. J Thorac Cardiovasc Surg 2019; 157: 23862398.CrossRefGoogle Scholar
Luo, K, Zheng, J, Zhu, Z, et al. Outcomes of right ventricular outflow tract reconstruction for children with persistent truncus arteriosus: a 10-year single-center experience. Pediatr Cardiol 2018; 39: 565574.CrossRefGoogle ScholarPubMed
Alsoufi, B, McCracken, C, Shashidharan, S, Deshpande, S, Kanter, K, Kogon, B. The impact of 22q11.2 deletion syndrome on surgical repair outcomes of conotruncal cardiac anomalies. Ann Thorac Surg 2017; 104: 15971604.CrossRefGoogle ScholarPubMed
Jacobs, JP, Mayer, JE, Mavroudis, C, et al. The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2017 update on outcomes and quality. Ann Thorac Surg 2017; 103: 699709.CrossRefGoogle Scholar
McElhinney, DB, Hedrick, HL, Bush, DM, et al. Necrotizing enterocolitis in neonates with congenital heart disease: risk factors and outcomes. Pediatrics 2000; 106: 10801087.CrossRefGoogle ScholarPubMed
McElhinney, DB, McDonald-McGinn, D, Zackai, EH, Goldmuntz, E. Cardiovascular anomalies in patients diagnosed with a chromosome 22q11 deletion beyond 6 months of age. Pediatrics 2001; 108: E104.CrossRefGoogle ScholarPubMed
Parshuram, C, Doyle, J, Lau, W, Shemie, SD. Transfusion-associated graft versus host disease. Ped Crit Care Med 2002; 3: 5762.CrossRefGoogle ScholarPubMed
Ryan, AK, Goodship, JA, Wilson, DI, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 1997; 34: 798804.CrossRefGoogle ScholarPubMed
Yoshitake, S, Kaneko, Y, Yakuwa, K, Achiwa, I. Successful truncal valve replacement with a mechanical valve after bilateral pulmonary artery banding. World J Pediatr Congenit Heart Surg 2019; 10: 384387.CrossRefGoogle ScholarPubMed
Sakurai, T, Sakurai, H, Yamana, K, et al. Expectations and limitations after bilateral pulmonary artery banding. Eur J Cardiothorac Surg 2016; 50: 626631.CrossRefGoogle ScholarPubMed
Hoashi, T, Kagisaki, K, Oda, T, Ichikawa, H. Staged biventricular repair for persistent truncus arteriosus with aortic arch obstruction following bilateral pulmonary artery banding. Interact CardioVasc Thorac Surg 2011; 12: 281283.CrossRefGoogle ScholarPubMed
Hoffman, TM, Wernovsky, G, Atz, AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 2003; 107: 9961002.CrossRefGoogle ScholarPubMed
Parikh, B, Eisses, M, Latham, GJ, Joffe, DC, Ross, FJ. Perioperative and anesthetic considerations in truncus arteriosus. Semin Cardiothorac Vasc Anesth 2018; 22: 285293.CrossRefGoogle ScholarPubMed
Brown, JW, Ruzmetov, M, Okada, Y, Vijay, P, Turrentine, MW. Truncus arteriosus repair: outcomes, risk factors, reoperation and management. Eur J Cardiothorac Surg 2001; 20: 221227.CrossRefGoogle ScholarPubMed
Asagai, S, Inai, K, Shinohara, T, et al. Long-term outcomes after truncus arteriosus repair: a single-center experience for more than 40 years. Congenit Heart Dis 2016; 11: 672677.CrossRefGoogle ScholarPubMed
Russell, HM, Pasquali, SK, Jacobs, JP, et al. Outcomes of repair of common arterial trunk with truncal valve surgery: a review of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg 2012; 93: 164169.CrossRefGoogle Scholar
Kaza, AK, Lim, HG, Dibardino, DJ, et al. Long-term results of right ventricular outflow tract reconstruction in neonatal cardiac surgery: options and outcomes. J Thorac Cardiovasc Surg 2009; 138: 911916.CrossRefGoogle ScholarPubMed
Sinzobahamvya, N, Boscheinen, M, Blaschczok, HC, et al. Survival and reintervention after neonatal repair of truncus arteriosus with valved conduit. Eur J Cardiothorac Surg 2008; 34: 732737.CrossRefGoogle ScholarPubMed
Kalavrouziotis, G, Purohit, M, Ciotti, G, Corno, AF, Pozzi, M. Truncus arteriosus communis: early and midterm results of early primary repair. Ann Thorac Surg 2006; 82: 22002206.CrossRefGoogle ScholarPubMed
Brown, JW, Ruzmetov, M, Okada, Y, Vijay, P, Rodefeld, MD, Turrentine, MW. Outcomes in patients with interrupted aortic arch and associated anomalies: a 20-year experience. Eur J Cardiothorac Surg 2006; 29: 666673; discussion 673–4.CrossRefGoogle ScholarPubMed
Thompson, LD, McElhinney, DB, Reddy, M, Petrossian, E, Silverman, NH, Hanley, FL. Neonatal repair of truncus arteriosus: continuing improvement in outcomes. Ann Thorac Surg 2001; 72: 391395.CrossRefGoogle ScholarPubMed
Schreiber, C, Eicken, A, Balling, G, et al. Single centre experience on primary correction of common arterial trunk: overall survival and freedom from reoperation after more than 15 years. Eur J Cardiothorac Surg 2000; 18: 6873.CrossRefGoogle ScholarPubMed
Jahangiri, M, Zurakowski, D, Mayer, JE, del Nido, PJ, Jonas, RA. Repair of the truncal valve and associated interrupted arch in neonates with trun- cus arteriosus. J Thorac Cardiovasc Surg 2000; 119: 508514.CrossRefGoogle Scholar
Chen, Q, Gao, H, Hua, Z, et al. Outcomes of surgical repair for persistent truncus arteriosus from neonates to adults: a single centers experience. PLoS One 2016; 11: e0146800.CrossRefGoogle Scholar
Ullmann, MV, Gorenflo, M, Sebening, C, Ulmer, HE, Hagl, S. Long-term results after repair of truncus arteriosus communis in neonates and infants. Thorac Cardiovasc Surg 2003; 51: 175179.Google ScholarPubMed
Alexiou, C, Keeton, BR, Salmon, AP, Monro, JL. Repair of truncus arteriosus in early infancy with antibiotic sterilized aortic homografts. Ann Thorac Surg 2001; 71: S371S374.CrossRefGoogle Scholar
Patrick, WL, Mainwaring, RD, Carrillo, SA, et al. Anatomic factors associated with truncal valve insufficiency and the need for truncal valve repair. World J Pediatr Congenit Heart Surg 2016; 7: 915.CrossRefGoogle ScholarPubMed
Bohuta, L, Hussein, A, Fricke, TA, et al. Surgical repair of truncus arteriosus associated with interrupted aortic arch: long-term outcomes. Ann Thorac Surg 2011; 91: 14731477.CrossRefGoogle ScholarPubMed
Konstantinov, IE, Karamlou, T, Blackstone, EH, et al. Truncus arteriosus associated with interrupted aortic arch in 50 neonates: a Congenital Heart Surgeons Society study. Ann Thorac Surg 2006; 81: 214222.CrossRefGoogle ScholarPubMed
Backer, CL. Techniques for repairing the aortic and truncal valves. Cardiol Young 2005; 15: 125131.CrossRefGoogle ScholarPubMed
Shuhaiber, J, Thiagarajan, RR, Laussen, PC, Fynn-Thompson, F, del Nido, P, Pigula, F. Survival of children requiring repeat extracorporeal membrane oxygenation after congenital heart surgery. Ann Thorac Surg 2011; 91: 19491955.CrossRefGoogle ScholarPubMed
Miyamoto, T, Sinzobahamvya, N, Kumpikaite, D, et al. Repair of truncus arteriosus and aortic arch interruption: outcome analysis. Ann Thorac Surg 2005; 79: 20772082.CrossRefGoogle ScholarPubMed
Danton, MH, Barron, DJ, Stumper, O, et al. Repair of truncus arteriosus: a considered approach to right ventricular outflow tract reconstruction. Eur J Cardiothorac Surg 2001; 20: 95103.CrossRefGoogle ScholarPubMed
Lund, AM, Vogel, M, Marshall, AC, et al. Early reintervention on the pulmonary arteries and right ventricular outflow tract after neonatal or early infant repair of truncus arteriosus using homograft conduits. Am J Cardiol 2011; 108: 106113.CrossRefGoogle ScholarPubMed
Hawkins, JA, Kaza, AK, Burch, PT, Lambert, LM, Holubkov, R, Witte, MK. Simple versus complex truncus arteriosus: neutralization of risk but with increased resource utilization. World J Pediatr Congenit Heart Surg 2010; 1: 285291.CrossRefGoogle ScholarPubMed
Miyamoto, T, Sinzobahamvya, N, Photiadis, J, Brecher, AM, Asfour, B. Survival after surgery with cardiopulmonary bypass in low weight patients. Asian Cardiovasc Thorac Ann 2008; 16: 115119.CrossRefGoogle ScholarPubMed
O’Byrne, ML, Mercer-Rosa, L, Zhao, H, et al. Morbidity in children and adolescents following surgical correction of truncus arteriosus communis. Am Heart J 2013; 166: 512518.CrossRefGoogle Scholar
O’Byrne, ML, Yang, W, Mercer-Rosa, L, et al. 2q11.2 Deletion syndrome is associated with increased perioperative events and more complicated postoperative course in infants undergoing infant operative correction of truncus arteriosus communis or interrupted aortic arch. J Thorac Cardiovasc Surg 2014; 148: 15971605.CrossRefGoogle ScholarPubMed
Hanley, FL, Heinemann, MK, Jonas, RA, et al. Repair of truncus arteriosus in the neonate. J Thorac Cardiovasc Surg 1993; 105: 10471056.CrossRefGoogle ScholarPubMed
Arslan, AH, Ugurlucan, M, Yildiz, Y, et al. Surgical treatment of common arterial trunk in patients beyond the first year of life. World J Pediatr Congenit Heart Surg 2014; 5: 211215.CrossRefGoogle ScholarPubMed
Akintuerk, H, Michel-Behnke, I, Valeske, K, et al. Stenting of the arterial duct and banding of the pulmonary arteries: basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation 2002; 105: 10991103.CrossRefGoogle Scholar
Kaza, AK, Burch, PT, Pinto, N, Minich, LL, Tani, LY, Hawkins, JA. Durability of truncal valve repair. Ann Thorac Surg 2010; 90: 13071312.CrossRefGoogle ScholarPubMed
Mavroudis, C, Backer, CL. Surgical management of severe truncal insufficiency: experience with truncal valve remodeling techniques. Ann Thorac Surg 2001; 72: 396400.CrossRefGoogle ScholarPubMed
Henaine, R, Azarnoush, K, Belli, E, et al. Fate of the truncal valve in truncus arteriosus. Ann Thorac Surg 2008; 85: 172178.CrossRefGoogle Scholar
Myers, PO, Bautista-Hernandez, V, del Nido, PJ, et al. Surgical repair of truncal valve regurgitation. Eur J Cardiothorac Surg 2013; 44: 813820.CrossRefGoogle ScholarPubMed
Fujiwara, K, Imai, K, Yoshizawa, K, Ohno, N, Sakazaki, H, Tukuda, K. Truncal valve repair using autologous pericardial patch augmentation. Asian Cardiovasc Thorac Ann 2013; 21: 352354.CrossRefGoogle ScholarPubMed
Chai, PJ, Jacobs, JP, Quintessenza, JA. Surgery for common arterial trunk. Cardiol Young 2012; 22: 691695.CrossRefGoogle ScholarPubMed
Vouhe, PR. Editorial comment: common arterial trunk repair without extracardiac conduit: technically feasible, potentially advantageous. Eur J Cardiothorac Surg 2011; 40: 569570.Google ScholarPubMed
Nemoto, S, Ozawa, H, Sasaki, T, et al. Repair of persistent truncus arteriosus without a conduit: sleeve resection of the pulmonary trunk from the aorta and direct right ventriclepulmonary artery anastomosis. Eur J Cardiothorac Surg 2011; 40: 563568.Google ScholarPubMed
Xu, ZW, Shen, J. Repair of truncus arteriosus: choice of right ventricle outflow reconstruction. J Card Surg 2010; 25: 724729.CrossRefGoogle ScholarPubMed
Derby, CD, Kolcz, J, Gidding, S, Pizarro, C. Outcomes following non-valved autologous reconstruction of the right ventricular outflow tract in neonates and infants. Eur J Cardiothorac Surg 2008; 34: 726731.CrossRefGoogle ScholarPubMed
Honjo, O, Kotani, Y, Akagi, T, et al. Right ventricular outflow tract reconstruction in patients with persistent truncus arteriosus: a 15-year experience in a single Japanese center. Circ J 2007; 71: 17761780.CrossRefGoogle Scholar
Chen, JM, Glickstein, JS, Davies, RR, et al. The effect of repair technique on postoperative rightsided obstruction in patients with truncus arteriosus. J Thorac Cardiovasc Surg 2005; 129: 559568.CrossRefGoogle Scholar
Raisky, O, Ali, WB, Bajolle, F, et al. Common arterial trunk repair: with conduit or without? Eur J Cardiothorac Surg 2009; 36: 675682.CrossRefGoogle ScholarPubMed
Aguilar, JM, Garcia, E, Arlati, FG, Comas, JV. Repair of type III common arterial trunk with modified Barbero-Marcial technique. J Thorac Cardiovasc Surg 2015; 150: e69.CrossRefGoogle ScholarPubMed
Alfieris, GM, Gangemi, JJ, Schiralli, MP, Swartz, MF, Cholette, JM. Modified repair of truncus arteriosus to maintain pulmonary artery architecture. Ann Thorac Surg 2010; 90: 10381039.CrossRefGoogle ScholarPubMed
Barbero-Martial, M, Tanamati, C. Alternative nonvalved techniques for repair of truncus arteriosus: long-term results. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 1999; 2: 121130.CrossRefGoogle Scholar
Sandrio, S, Ruffer, A, Purbojo, A, Glockler, M, Dittrich, S, Cesnjevar, R. Common arterial trunk: current implementation of the primary and staged repair strategies. Interact CardioVasc Thorac Surg 2015; 21: 754760.Google ScholarPubMed
Tlaskal, T, Chaloupecky, V, Hucin, B, et al. Long-term results after correction of persistent truncus arteriosus in 83 patients. EurJ Cardiothorac Surg 2010; 37: 12781284.CrossRefGoogle ScholarPubMed
Niemantsverdriet, MB, Ottenkamp, J, Gauvreau, K, Del Nido, PJ, Hazenkamp, MG, Jenkins, KJ. Determinants of right ventricular outflow tract conduit longevity: a multinational analysis. Congenit Heart Dis 2008; 3: 176184.CrossRefGoogle ScholarPubMed
Mavroudis, C, Jonas, RA, Bove, EL. Personal glimpses into the evolution of truncus arteriosus repair. World J Pediatr Congenit Heart Surg 2015; 6: 226238.CrossRefGoogle Scholar
Brown, JW, Ruzmetov, M, Rodefeld, MD, Vijay, P, Turrentine, MW. Right ventricular outflow tract reconstruction with an allograft conduit in non- ross patients: risk factors for allograft dysfunction and failure. Ann Thorac Surg 2005; 80: 655663.CrossRefGoogle ScholarPubMed
Hickey, EJ, McCrindle, BW, Blackstone, EH, et al.; CHSS Pulmonary Conduit Working Group. Jugular venous valved conduit (Contegra) matches allograft performance in infant truncus arteriosus repair. Eur J Cardiothorac Surg 2008; 33: 890898.CrossRefGoogle ScholarPubMed
Sinzobahamvya, N, Asfour, B, Boscheinen, M, et al. Compared fate of small-diameter Contegras and homografts in the pulmonary position. Eur J Cardiothorac Surg 2007; 32: 209214.CrossRefGoogle ScholarPubMed
McElhinney, DB, Rajasinghe, HA, Mora, BN, Reddy, VM, Silverman, NH, Hanley, FL. Reinterventions after repair of common arterial trunk in neonates and young infants. J Am Coll Cardiol 2000; 35: 13171322.CrossRefGoogle ScholarPubMed
Buber, J, Assenza, GE, Huang, A, et al. Durability of large diameter right ventricular outflow tract conduits in adults with congenital heart disease. Int J Cardiol 2014; 175: 455463.CrossRefGoogle ScholarPubMed
Curi-Curi, P, Cervantes, J, Soulé, M, Erdmenger, J, Calderón-Colmenero, J, Ramírez, S. Early and midterm results of an alternative procedure to homografts in primary repair of truncus arteriosus communis. Congenit Heart Dis 2010; 5: 262270.CrossRefGoogle ScholarPubMed
Miyazaki, T, Yamagishi, M, Maeda, Y, et al. Long-term outcomes of expanded polytetrafluoroethylene conduits with bulging sinuses and a fan-shaped valve in right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg 2018; 155: 25672576.CrossRefGoogle Scholar
Erbel, V, Aboyans, V, Boileau, C, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases. Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 28732926.Google Scholar
Baumgartner, H, De Backer, J, Babu-Narayan, SV, et al. 2020 ESC Guidelines for the management of adult congenital heart disease: The Task Force for the management of adult congenital heart disease of the European Society of Cardiology (ESC). Eur Heart J 2020; doi: 10.1093/eurheartj/ehaa554.CrossRefGoogle Scholar
Peng, LF, McElhinney, DB, Nugent, AW, et al. Endovascular stenting of obstructed right ventricle-to-pulmonary artery conduits: a 15-year experience. Circulation 2006; 113: 25982605.CrossRefGoogle ScholarPubMed
Sugiyama, H, Williams, W, Benson, LN. Implantation of endovascular stents for the obstructive right ventricular outflow tract. Heart 2005; 91: 10581063.CrossRefGoogle ScholarPubMed
Carr, M, Bergersen, L, Marshall, AC, et al. Bare metal stenting for obstructed small diameter homograft conduits in the right ventricular outflow tract. Catheter Cardiovasc Interv 2013; 81: E44E52.CrossRefGoogle Scholar
Bonhoeffer, P, Boudjemline, Y, Saliba, Z, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000; 356: 14031405.CrossRefGoogle Scholar
McElhinney, DB, Hellenbrand, WE, Zahn, EM, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US Melody valve trial. Circulation 2010; 122: 507516.CrossRefGoogle Scholar
Lurz, PY, Coats, LM, Khambadkone, SM, et al. percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation 2008; 117: 19641972.CrossRefGoogle ScholarPubMed
Stout, KK, Daniels, CJ, Aboulhosn, JA, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019; 73: 14941563.CrossRefGoogle Scholar
Morray, BH, McElhinney, DB, Cheatham, JP, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ Cardiovasc Interv 2013; 6: 535542.CrossRefGoogle ScholarPubMed
Fraisse, A, Assaidi, A, Mauri, L, et al. Coronary artery compression during intention to treat right ventricle outflow with percutaneous pulmonary valve implantation: incidence, diagnosis, and outcome. Catheter Cardiovasc Interv 2014; 83: E260E268.CrossRefGoogle Scholar
Gonzalez, I, Kenny, D, Slyder, S, Hijazi, ZM. Medium and long-term outcomes after bilateral pulmonary artery stenting in children and adults with congenital heart disease. Pediatr Cardiol 2013; 34: 179184.CrossRefGoogle ScholarPubMed
Kenny, D, Amin, Z, Slyder, S, Hijazi, ZM. Medium-term outcomes for peripheral pulmonary artery stenting in adults with congenital heart disease. J Interv Cardiol 2011; 24: 373377.CrossRefGoogle ScholarPubMed
Smallhorn, JF. Intraoperative transesophageal echocardiography in congenital heart disease. Echocardiography 2002; 19: 709723.CrossRefGoogle ScholarPubMed
Ayres, NA, Miller-Hance, W, Fyfe, DA, et al. Indications and guidelines for performance of transesophageal echocardiography in the patient with pediatric acquired or congenital heart disease: report from the task force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr 2005; 18: 9198.CrossRefGoogle ScholarPubMed
Muhiudeen, IA, Roberson, DA, Silverman, NH, Haas, G, Turley, K, Cahalan, MK. Intraoperative echocardiography in infants and children with congenital cardiac shunt lesions: transesophageal versus epicardial echocar- diography. J Am Coll Cardiol 1990; 16: 16871695.CrossRefGoogle Scholar
Manvi, VF, Dixit, M, Srinivas, K, Vagarali, A, Patil, S, Manvi, NG. Accuracy of intraoperative epicardial echocardiography in the assessment of surgical repair of congenital heart defects confirmed. J Cardiovasc Echography 2013; 23: 6065.CrossRefGoogle ScholarPubMed
Kozlik-Feldmann, R, Hansmann, G, Bonnet, D, Schranz, D, Apitz, C, Michel-Behnke, I. Pulmonary hypertension in children with congenital heart disease (PAH-CHD, PPHVD-CHD). Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 2016; 102: ii42ii48.CrossRefGoogle ScholarPubMed
Kaestner, M, Schranz, D, Warnecke, G, Apitz, C, Hansmann, G, Miera, O. Pulmonary hypertension in the intensive care unit. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 2016; 102: ii57ii66.CrossRefGoogle Scholar
McGoon, DC, Rastelli, GC, Ongley, PA. An operation for the correction of truncus arteriosus. JAMA 1968; 205: 6971.CrossRefGoogle ScholarPubMed
Jacobs, JP, Mayer, JE, Pasquali, SK, et al. The society of thoracic surgeons congenital heart surgery database: 2019 update. Ann Thorac Surg 2019; 107: 691704.CrossRefGoogle Scholar
Uzzaman, MM, Khan, NE, Davies, B, et al. Long-term outcome of interrupted arch repair with direct anastomosis and homograft augmentation patch. Ann Thorac Surg 2018; 105: 18191826.CrossRefGoogle ScholarPubMed
Boris, JR. Primary care management of patients with common arterial trunk and transposition of the great arteries. Cardiol Young 2012; 22: 761767.CrossRefGoogle ScholarPubMed
Wernovsky, G, Rome, J, Tabbutt, S, et al. Guidelines for the outpatient management of complex congenital heart disease: outpatient management of complex CHD. Congenit Heart Dis 2006; 1: 1026.CrossRefGoogle Scholar
Falk, V, Baumgartner, B, Bax, JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur J Cardiothorac Surg 2017; 52: 616664.CrossRefGoogle ScholarPubMed
Cheatham, JP, Hellenbrand, WE, Zahn, EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation 2015; 131: 19601970.CrossRefGoogle ScholarPubMed
Eicken, A, Ewert, P, Hager, A, et al. Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients. Eur Heart J 2011; 32: 12601265.CrossRefGoogle ScholarPubMed
Haas, NA, Schirmer, KR. Guidelines for the management of congenital heart diseases in childhood and adolescence. Cardiol Young 2017; 27 (Suppl 3): S1S105.Google Scholar
Galié, N, Humbert, M, Vachiery, JL, et al.; ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37: 67119.CrossRefGoogle Scholar
Fung, WL, Butcher, NJ, Costain, G, et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet Med 2015; 17: 599609.CrossRefGoogle ScholarPubMed
Habel, A, Herriot, R, Kumararatne, D, et al. Towards a safety net for management of 22q11.2 deletion syndrome: guidelines for our times. Eur J Pediatr 2014; 173: 757765.CrossRefGoogle ScholarPubMed
Decker, JA, McCormack, J, Cohen, MI. Arrhythmia management in patients with a common arterial trunk and d-transposition of the great arteries. Cardiol Young 2012; 22: 748754.CrossRefGoogle ScholarPubMed
Warnes, CA, Williams, RG, Bashore, TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Adults With Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2008; 52: 18901947.CrossRefGoogle Scholar
Valente, AM, Cook, S, Festa, P, et al. Multimodality imaging guidelines for patients with repaired tetralogy of Fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr 2014; 27: 111141.CrossRefGoogle Scholar
Kilner, PJ, Geva, T, Kaemmerer, H, Trindade, PT, Schwitter, J, Webb, GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur HeartJ 2010; 31: 794805.CrossRefGoogle ScholarPubMed
Grewal, J, Majdalany, D, Syed, I, Pellikka, P, Warnes, CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2010; 23: 127133.CrossRefGoogle ScholarPubMed
Mannaerts, HF, Van Der Heide, JA, Kamp, O, et al. Quantification of left ventricular volumes and ejection fraction using freehand transthoracic three-dimensional echocardiography: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2003; 16: 101109.CrossRefGoogle ScholarPubMed
Malm, S, Frigstad, S, Sagberg, E, Larsson, H, Skjaerpe, T. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging. J Am Coll Cardiol 2004; 44: 10301035.CrossRefGoogle ScholarPubMed
Valsangiacomo Buechel, ER, Grosse-Wortmann, L, Fratz, S, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Eur Heart J Cardiovasc Imaging 2015; 16: 281297.CrossRefGoogle Scholar
Beerbaum, P, Körperich, H, Barth, P, Esdorn, H, Gieseke, J, Meyer, H. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 2001; 103: 24762482.CrossRefGoogle ScholarPubMed
Babu-Narayan, SV, Kilner, PJ, Li, W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers ofclinical outcome. Circulation 2006; 113: 405413.CrossRefGoogle Scholar
Wald, RM, Haber, I, Wald, R, Valente, AM, Powell, AJ, Geva, T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation 2009; 119: 13701377.CrossRefGoogle ScholarPubMed
Stout, KK, Daniels, CJ, Aboulhosn, JA, et al. 2018 AHA/ACC Guideline for the management of adults with congenital heart disease: a Report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 139: e833e834.Google Scholar
Saremi, F, Ho, SY, Cabrera, JA, Sáanchez-Quintana, D. Right ventricular outflow tract imaging with CT and MRI: part 2, function. AJR Am J Roentgenol 2013; 200: W51W61.CrossRefGoogle ScholarPubMed
Takx, RA, Moscariello, A, Schoepf, UJ, et al. Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 2012; 81: e598.CrossRefGoogle ScholarPubMed
Maffei, E, Messalli, G, Martini, C, et al. Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR. Eur Radiol 2012; 22: 10411049.CrossRefGoogle ScholarPubMed
Diller, G, Dimopoulos, K, Okonko, D, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation 2005; 112: 828835.CrossRefGoogle ScholarPubMed
Sarris, GE, Balmer, C, Bonou, P, et al.; Authors/Task Force Members. Clinical guidelines for the management of patients with transposition of the great arteries with intact ventricular septum. Cardiol Young 2017; 27: 530569.Google ScholarPubMed
Gisler, F, Knirsch, W, Harpes, P, Bauersfeld, U. Effectiveness of angiotensinconverting enzyme inhibitors in pediatric patients with mid to severe aortic valve regurgitation. Pediatr Cardiol 2008; 29: 906909.CrossRefGoogle Scholar
Evangelista, A, Tornos, P, Sambola, A, Permanyer-Miralda, G, Soler-Soler, J. Long-term vasodilator therapy in patients with severe aortic regurgitation. N Engl J Med 2005; 353: 13421349.CrossRefGoogle ScholarPubMed
Schön, HR. Hemodynamic and morphologic changes after long-term angiotensin converting enzyme inhibition in patients with chronic valvular regurgitation. J Hypertens 1994; 12: S95S104.Google ScholarPubMed
Shah, RM, Singh, M, Bhuriya, R, Molnar, J, Arora, RR, Khosla, S. Favorable effects of vasodilators on left ventricular remodeling in asymptomatic patients with chronic moderate-severe aortic regurgitation and normal ejection fraction: a meta-analysis of clinical trials. Clin Cardiol 2012; 35: 619625.CrossRefGoogle ScholarPubMed
Niwa, K, Perloff, JK, Bhuta, SM, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation 2001; 103: 393400.CrossRefGoogle ScholarPubMed
Frischhertz, BP, Shamszad, P, Pedroza, C, Milewicz, DM, Morris, SA. Thoracic aortic dissection and rupture in conotruncal cardiac defects: a population-based study. Int J Cardiol 2015; 184: 521527.CrossRefGoogle ScholarPubMed
Zanjani, KS, Niwa, K. Aortic dilatation and aortopathy in congenital heart diseases. J Cardiol 2013; 61: 1621.CrossRefGoogle Scholar
Habib, G, Lancellotti, P, Antunes, MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis. The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015; 36: 30753128.CrossRefGoogle Scholar
Longmuir, P, Brothers, J, De Ferranti, S, et al. Promotion of physical activity for children and adults with congenital heart disease: a scientific statement from the American Heart Association. Circulation 2013; 127: 21472159.CrossRefGoogle ScholarPubMed
Takken, T, Giardini, A, Reybrouck, T, et al. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiolog 2012; 19: 10341065.CrossRefGoogle ScholarPubMed
Uebing, A, Steer, P, Yentis, S, Gatzoulis, M. Pregnancy and congenital heart disease. BMJ 2006; 332: 401406.CrossRefGoogle ScholarPubMed
Regitz-Zagrosek, V, Roos-Hesselink, JW, Bauersachs, J, et al.; ESC Scientific Document Group. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J 2018; 39: 31653241.CrossRefGoogle ScholarPubMed
Avila, WS, Grinberg, M, Snitcowsky, R, et al. Maternal and fetal outcome in pregnant women with EisenmengePs syndrome. Eur Heart J 1995; 16: 460464.CrossRefGoogle ScholarPubMed
Thorne, S, Macgregor, A, Nelson-Piercy, C. Risks of contraception and pregnancy in heart disease. Heart 2006; 92: 15201525.CrossRefGoogle ScholarPubMed
Balint, OH, Siu, SC, Mason, J, et al. Cardiac outcomes after pregnancy in women with congenital heart disease. Heart 2010; 96: 16561661.CrossRefGoogle ScholarPubMed
Roos-Hesselink, JW, Ruys, TP, Stein, JI, et al.; ROPAC Investigators. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur Heart J 2013; 34: 657665.CrossRefGoogle ScholarPubMed
European Congenital Heart Surgeons Association (ECHSA) Congenital Database. Online report—Mortality vs. procedure, 2020. Retrieved August 2020, from https://echsacongenitaldb.org/mvp_report/ Google Scholar