Hostname: page-component-6587cd75c8-6qszs Total loading time: 0 Render date: 2025-04-24T00:00:50.190Z Has data issue: false hasContentIssue false

Cardiac biomarkers in COVID-19: what did we learn?

Published online by Cambridge University Press:  13 September 2024

Lara Srour
Affiliation:
Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
Jaafar Ismail
Affiliation:
Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
Rana Zareef
Affiliation:
Department of Pediatrics and Adolescent Medicine, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
Mariam Arabi*
Affiliation:
Department of Pediatrics and Adolescent Medicine, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
*
Corresponding author: Mariam Arabi; Email: [email protected]

Abstract

Objectives:

COVID-19, caused by the SARS-CoV-2 virus, has generated a global pandemic with a wide range of clinical manifestations. Cardiovascular complications are frequently observed in individuals with COVID-19, particularly those with preexisting cardiovascular risk factors or diseases. Cardiac biomarkers, including troponin, natriuretic peptides, and inflammatory markers, play a vital role in risk stratification, diagnosis, monitoring, and prognosis in COVID-19 patients. These biomarkers provide valuable insights into cardiac injury, myocardial stress, inflammation, and the prediction of adverse cardiovascular outcomes. This review aims to provide better understanding of how Cardiac biomarkers correlate to clinical manifestation of COVID-19.

Methods:

We retrieved studies from PubMed, Medline, and Google Scholars that included results on cardiac biomarkers in COVID-19. Total of 14 studies were reviewed.

Results:

8 studies showed evidence of poor progression of the disease when there is increased troponin. 6 studies out of the 14 mentioned in this review showed positive correlation between mortality and elevation in cardiac biomarkers. This shows the significance of cardiac biomarkers in predicting the mortality in patients with COVID-19.

Conclusion:

It was shown that elevated cardiac biomarkers were associated significantly to poor outcome of covid-19 infection. The outcomes that were linked to increased cardiac biomarkers included increased length of hospitalization, need of life sustaining treatment, myocarditis, invasive and non-invasive respiratory support, and even death were linked to elevated cardiac biomarkers levels.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Lara Srour and Jaafar Ismail are contributed equally to the manuscript.

References

Nasab, EM, Aghajani, H, Makoei, RH, Athari, SS. COVID-19’s immuno-pathology and cardiovascular diseases. J Investig Med 2023; 71: 7180. DOI: 10.1177/10815589221141841.CrossRefGoogle ScholarPubMed
Vosko, I, Zirlik, A, Bugger, H. Impact of COVID-19 on cardiovascular disease. Viruses 2023; 15: 508. DOI: 10.3390/v15020508.CrossRefGoogle ScholarPubMed
Schneider, M. The role of biomarkers in hospitalized COVID-19 patients with systemic manifestations. Biomark Insights 2022; 17: 11772719221108909. DOI: 10.1177/11772719221108909.CrossRefGoogle ScholarPubMed
Nasab, EM, Aghajani, H, Makoei, RH, Athari, SS. COVID-19’s immuno-pathology and cardiovascular diseases. J Invest Med 2023; 71: 7180.CrossRefGoogle ScholarPubMed
Levett, JY, Raparelli, V, Mardigyan, V, Eisenberg, MJ. Cardiovascular pathophysiology, epidemiology, and treatment considerations of coronavirus disease 2019 (COVID-19): a review. CJC Open 2021; 3: 2840. DOI: 10.1016/j.cjco.2020.09.003.CrossRefGoogle ScholarPubMed
Collins, SP, Chappell, MC, Files, DC. The renin-angiotensin-aldosterone system in COVID-19-related and non-COVID-19-related acute respiratory distress syndrome: not so different after all? Am J Respir Crit Care Med 2021; 1: 10071008. DOI: 10.1164/rccm.202108-1904ED.CrossRefGoogle Scholar
Ródenas-Alesina, E, Rodríguez-Palomares, J, Bach-Oller, M, et al. Echocardiographic assessment of COVID19 sequelae in survivors with elevated cardiac biomarkers. Int J Cardiol 2022; 360: 104110. DOI: 10.1016/j.ijcard.2022.04.070.CrossRefGoogle ScholarPubMed
Vosko, I, Zirlik, A, Bugger, H. Impact of COVID-19 on cardiovascular disease. Viruses 2023; 15: 508.CrossRefGoogle ScholarPubMed
Xie, Y, Xu, E, Bowe, B, Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022; 28: 583590. DOI: 10.1038/s41591-022-01689-3.CrossRefGoogle ScholarPubMed
Lampejo, T, Durkin, SM, Bhatt, N, Guttmann, O. Acute myocarditis: aetiology, diagnosis and management. Clin Med (Lond) 2021; 21: e505e510. DOI: 10.7861/clinmed.2021-0121.CrossRefGoogle ScholarPubMed
Italia, L, Tomasoni, D, Bisegna, S, et al. COVID-19 and heart failure: from epidemiology during the pandemic to myocardial Injury, myocarditis, and heart failure sequelae. Review. Front Cardiovasc Med 2021; 8: 713560. DOI: 10.3389/fcvm.2021.713560.CrossRefGoogle Scholar
Raman, B, Bluemke, DA, Lüscher, TF, Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J 2022; 14: 11571172. DOI: 10.1093/eurheartj/ehac031.CrossRefGoogle Scholar
Ran, K, Guy, W. Acute myocarditis caused by COVID-19 disease and following COVID-19 vaccination. Open Heart 2022; 9: e001957. DOI: 10.1136/openhrt-2021-001957.Google Scholar
Mondal, S, Quintili, AL, Karamchandani, K, Bose, S. Thromboembolic disease in COVID-19 patients: a brief narrative review. J Intensive Care 2020; 8: 70. DOI: 10.1186/s40560-020-00483-y.CrossRefGoogle ScholarPubMed
Cheng, NM, Chan, YC, Cheng, SW. COVID-19 related thrombosis: a mini-review. Phlebology 2022; 37: 326337. DOI: 10.1177/02683555211052170.CrossRefGoogle ScholarPubMed
Farkouh, ME, Stone, GW, Lala, A, et al. Anticoagulation in patients with COVID-19: JACC review topic of the week. J Am Coll Cardiol 2022; 79: 917928. DOI: 10.1016/j.jacc.2021.12.023.CrossRefGoogle ScholarPubMed
Barnes, GD, Burnett, A, Allen, A, et al. Thromboembolic prevention and anticoagulant therapy during the COVID-19 pandemic: updated clinical guidance from the anticoagulation forum. J Thromb Thrombolysis 2022; 54: 197210. DOI: 10.1007/s11239-022-02643-3.CrossRefGoogle ScholarPubMed
Timpau, AS, Miftode, RS, Leca, D, et al. A real Pandora’s box in pandemic times: a narrative review on the acute cardiac injury due to COVID-19. Life (Basel) 2022; 12: 1085. DOI: 10.3390/life12071085.Google ScholarPubMed
Kanuri, SH, Jayesh Sirrkay, P, Ulucay, AS. COVID-19 HEART unveiling as atrial fibrillation: pathophysiology, management and future directions for research. Egypt Heart J 2023; 75: 36. DOI: 10.1186/s43044-023-00359-0.CrossRefGoogle ScholarPubMed
Dherange, P, Lang, J, Qian, P, et al. Arrhythmias and COVID-19: a review. JACC Clin Electrophysiol 2020; 6: 11931204. DOI: 10.1016/j.jacep.2020.08.002.CrossRefGoogle ScholarPubMed
Tsai, EJ, Cˇiháková, D, Tucker, NR. Cell-specific mechanisms in the heart of COVID-19 patients. Circ Res 2023; 132: 12901301. DOI: 10.1161/circresaha.123.321876.CrossRefGoogle ScholarPubMed
Veluswamy, P, Wacker, M, Stavridis, D, et al. The SARS-CoV-2/receptor axis in heart and blood vessels: a crisp update on COVID-19 disease with cardiovascular complications. Viruses 2021; 13: 1346. DOI: 10.3390/v13071346.CrossRefGoogle ScholarPubMed
Yang, Y, Li, W, You, B, Zhou, C. Advances in cell death mechanisms involved in viral myocarditis. Front Cardiovasc Med 2022; 9: 968752. DOI: 10.3389/fcvm.2022.968752.CrossRefGoogle ScholarPubMed
Lindner, D, Fitzek, A, Bräuninger, H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol 2020; 5: 12811285. DOI: 10.1001/jamacardio.2020.3551.CrossRefGoogle ScholarPubMed
Bräuninger, H, Stoffers, B, Fitzek, ADE, et al. Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart. Cardiovasc Res 2022; 118: 542555. DOI: 10.1093/cvr/cvab322.CrossRefGoogle ScholarPubMed
Ye, Q, Wang, B, Mao, J. The pathogenesis and treatment of the Cytokine Storm’ in COVID-19. J Infect 2020; 80: 607613. DOI: 10.1016/j.jinf.2020.03.037.CrossRefGoogle ScholarPubMed
Montazersaheb, S, Hosseiniyan Khatibi, SM, Hejazi, MS,. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J 2022; 19: 92. DOI: 10.1186/s12985-022-01814-1.CrossRefGoogle ScholarPubMed
Tan, LY, Komarasamy, TV, Balasubramaniam, RMT, V. Hyperinflammatory immune response and COVID-19: a double edged sword. Review. Front Immunol 2021; 12. DOI: 10.3389/fimmu.2021.742941.CrossRefGoogle Scholar
Otifi, HM, Adiga, BK. Endothelial dysfunction in covid-19 infection. Am J Med Sci 2022; 363: 281287. DOI: 10.1016/j.amjms.2021.12.010.CrossRefGoogle ScholarPubMed
Canale, MP, Menghini, R, Martelli, E, Federici, M. COVID-19-associated endothelial dysfunction and microvascular injury: from pathophysiology to clinical manifestations. Card Electrophysiol Clin 2022; 14: 2128. DOI: 10.1016/j.ccep.2021.10.003.CrossRefGoogle ScholarPubMed
Páramo, JA. Inflammatory response in relation to COVID-19 and other prothrombotic phenotypes. Reumatol Clín (Engl Ed) 2022; 18: 14. DOI: 10.1016/j.reumae.2020.06.007.Google ScholarPubMed
Colling, ME, Kanthi, Y. COVID-19-associated coagulopathy: an exploration of mechanisms. Vasc Med 2020; 25: 471478. DOI: 10.1177/1358863x20932640.CrossRefGoogle ScholarPubMed
Conway, EM, Mackman, N, Warren, RQ, et al. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 2022; 22: 639649. DOI: 10.1038/s41577-022-00762-9.CrossRefGoogle ScholarPubMed
Raber, I, McCarthy Cian, P, Januzzi James, L. A test in context: interpretation of high-sensitivity cardiac troponin assays in different clinical settings. J Am Coll Cardiol 2021; 77: 13571367. DOI: 10.1016/j.jacc.2021.01.011.CrossRefGoogle ScholarPubMed
Singh, N, Anchan, RK, Besser, SA, et al. High sensitivity Troponin-T for prediction of adverse events in patients with COVID-19. Biomarkers 2020; 25: 626633. DOI: 10.1080/1354750x.2020.1829056.CrossRefGoogle ScholarPubMed
Giustino, G, Pinney, SP, Lala, A, et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar. J Am Coll Cardiol, 2020; 76, 20112023. DOI: 10.1016/j.jacc.2020.08.059.CrossRefGoogle ScholarPubMed
Larcher, R, Besnard, N, Akouz, A, et al. Admission high-sensitive cardiac troponin T level increase is independently associated with higher mortality in critically ill patients with COVID-19: a multicenter study. J Clin Med 2021; 10: 1656. DOI: 10.3390/jcm10081656.CrossRefGoogle ScholarPubMed
Cao, Z, Jia, Y, Zhu, B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int J Mol Sci 2019; 20 1820. DOI: 10.3390/ijms20081820.CrossRefGoogle ScholarPubMed
Caro-Codón, J, Rey, JR, Buño, A, et al. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur J Heart Fail 2021; 23: 456464. DOI: 10.1002/ejhf.2095.CrossRefGoogle Scholar
Pranata, R, Huang, I, Lukito, AA, Raharjo, SB. Elevated N-terminal pro-brain natriuretic peptide is associated with increased mortality in patients with COVID-19: systematic review and meta-analysis. Postgrad Med J 2020; 96: 387391. DOI: 10.1136/postgradmedj-2020-137884.CrossRefGoogle ScholarPubMed
Sorrentino, S, Cacia, M, Leo, I, et al. B-type natriuretic peptide as biomarker of COVID-19 disease severity-A meta-analysis. J Clin Med 2020; 9: 2957. DOI: 10.3390/jcm9092957.CrossRefGoogle ScholarPubMed
O’Donnell, C, Ashland, MD, Vasti, EC, et al. N-terminal Pro-B-type natriuretic peptide as a biomarker for the severity and outcomes with COVID-19 in a nationwide hospitalized cohort. J Am Heart Assoc 2021; 10: e022913. DOI: 10.1161/jaha.121.022913.CrossRefGoogle Scholar
Zinellu, A, Sotgia, S, Carru, C, Mangoni, AA. B-type natriuretic peptide concentrations, COVID-19 severity, and mortality: a systematic review and meta-analysis with meta-regression. Front Cardiovasc Med 2021; 8: 690790. DOI: 10.3389/fcvm.2021.690790.CrossRefGoogle ScholarPubMed
Lee, EH, Lee, KH, Song, YG, Han, SH. Discrepancy of C-reactive protein, procalcitonin and interleukin-6 at hospitalization: infection in patients with normal C-reactive protein, procalcitonin and high interleukin-6 values. J Clin Med 2022; 11: 7324. DOI: 10.3390/jcm11247324.CrossRefGoogle ScholarPubMed
Picod, A, Morisson, L, de Roquetaillade, C, et al. Systemic inflammation evaluated by Interleukin-6 or C-reactive protein in critically ill patients: results from the FROG-ICU study. Original research. Front Immunol 2022; 13: 868348. DOI: 10.3389/fimmu.2022.868348.CrossRefGoogle ScholarPubMed
Ma, C, Tu, D, Gu, J, et al. The predictive value of myoglobin for COVID-19-related adverse outcomes: a systematic review and meta-analysis. Front Cardiovasc Med 2021; 8: 757799. DOI: 10.3389/fcvm.2021.757799.CrossRefGoogle ScholarPubMed
Wu, Y, Hou, B, Liu, J, Chen, Y, Zhong, P. Risk factors associated with long-term hospitalization in patients with COVID-19: a single-centered, retrospective study. Front Med (Lausanne) 2020; 7: 315. DOI: 10.3389/fmed.2020.00315.CrossRefGoogle ScholarPubMed
Parohan, M, Yaghoubi, S, Seraji, A. Cardiac injury is associated with severe outcome and death in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Eur Heart J Acute Cardiovasc Care 2020; 9: 665677. DOI: 10.1177/2048872620937165.CrossRefGoogle ScholarPubMed
Zinellu, A, Sotgia, S, Fois, AG, Mangoni A.A.Serum, CK-MB. COVID-19 severity and mortality: an updated systematic review and meta-analysis with meta-regression. Adv Med Sci 2021; 66: 304314. DOI: 10.1016/j.advms.2021.07.001.CrossRefGoogle ScholarPubMed
Smadja, DM, Fellous, BA, Bonnet, G, et al. D-dimer, BNP/NT-pro-BNP, and creatinine are reliable decision-making biomarkers in life-sustaining therapies withholding and withdrawing during COVID-19 outbreak. Front Cardiovasc Med 2022; 9: 935333. DOI: 10.3389/fcvm.2022.935333.CrossRefGoogle ScholarPubMed
Mahmoud, AA, Abd El-Hafeez, HA, Ali, AO, Hassan, AKM, Seddik, MI. Plasma brain natriuretic peptide, D-Dimer, and serum troponin-I as predictors for in-hospital death in patients with COVID-19. Egypt J Immunol 2023; 30: 3243.CrossRefGoogle ScholarPubMed
Stavileci, B, Ereren, E, Özdemir, E, Özdemir, B, Cengiz, M, Enar, R. The impact of daily troponin I and D-dimer serum levels on mortality in COVID-19 pneumonia patients. Cardiovasc J Afr 2023; 34: 1622. DOI: 10.5830/cvja-2022-017.CrossRefGoogle ScholarPubMed
Rehman, A, Yousuf, S, Maken, GR, Naqvi, SRA, Murtaza, G, Ahmad, A. Cardiac troponin-I, a biomarker for predicting COVID-induced myocardial damage prognosis. J Coll Physicians Surg Pak 2023; 33: 498503. DOI: 10.29271/jcpsp.2023.05.498.Google ScholarPubMed
Liu, A, Hammond, R, Chan, K, et al. Normal high-sensitivity cardiac troponin for ruling-out inpatient mortality in acute COVID-19. PLoS One 2023; 18: e0284523. DOI: 10.1371/journal.pone.0284523.CrossRefGoogle ScholarPubMed
Mukhopadhyay, A, Talmor, N, Xia, Y, et al. Sex differences in the prognostic value of troponin and D-dimer in COVID-19 illness. Heart Lung 2023; 58: 15. DOI: 10.1016/j.hrtlng.2022.10.012.CrossRefGoogle ScholarPubMed
Javidi Dasht Bayaz, R, Askari, VR, Tayyebi, M, Ahmadi, M, Heidari-Bakavoli, A, Baradaran Rahimi, V. Increasing cardiac troponin-I level as a cardiac injury index correlates with in-hospital mortality and biofactors in severe hospitalised COVID-19 patients. J Infect Chemother 2023; 29: 250256. DOI: 10.1016/j.jiac.2022.11.007.CrossRefGoogle ScholarPubMed
McCall, PJ, Willder, JM, Stanley, BL, et al. Right ventricular dysfunction in patients with COVID-19 pneumonitis whose lungs are mechanically ventilated: a multicentre prospective cohort study. Anaesthesia 2022; 77: 772784. DOI: 10.1111/anae.15745.CrossRefGoogle ScholarPubMed
Guner Ozenen, G, Akaslan Kara, A, Kiymet, E, et al. The evaluation of troponin I levels and myocarditis in children with COVID-19: a pediatric single-center experience. Pediatr Cardiol 2023; 44: 873881. DOI: 10.1007/s00246-022-03017-5.CrossRefGoogle ScholarPubMed
Zhu, F, Li, W, Lin, Q, Xu, M, Du, J, Li, H. Myoglobin and troponin as prognostic factors in patients with COVID-19 pneumonia. Med Clin (Barc) 2021; 157: 164171. DOI: 10.1016/j.medcli.2021.01.013.CrossRefGoogle ScholarPubMed
Galvani, M, Panteghini, M, Ottani, F, et al. The new definition of myocardial infarction: analysis of the ESC/ACC Consensus Document and reflections on its applicability to the Italian Health System. Ital Heart J Off J Ital Feder Cardiol 2002; 10: 543557.Google Scholar
Raju, NA, Rao, SV, Joel, JC, et al. Predictive value of serum myoglobin and creatine phosphokinase for development of acute kidney injury in traumatic rhabdomyolysis. Indian J Crit Care Med 2017; 21: 852856. DOI: 10.4103/ijccm.IJCCM_186_17.CrossRefGoogle ScholarPubMed
Shrivastava, A, Haase, T, Zeller, T, Schulte, C. Biomarkers for heart failure prognosis: proteins, genetic scores and non-coding RNAs. Review. Front Cardiovasc Med 2020; 7: 601364. DOI: 10.3389/fcvm.2020.601364.CrossRefGoogle Scholar