Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-05-04T18:15:18.008Z Has data issue: false hasContentIssue false

Application of right ventricular to pulmonary valved conduit in the surgical treatment of congenital heart disease

Published online by Cambridge University Press:  25 October 2024

Zhangwei Wang
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
Kai Ma
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
Shoujun Li*
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
*
Corresponding author: S. Li; Email: [email protected]

Abstract

Pulmonary valve replacement and right ventricular outflow tract reconstruction with valved conduits have been the shortcomings of paediatric cardiac surgeons in the treatment of CHD. In recent decades, encouraging achievements have been made in right ventricular outflow tract technology. Since Klinner reported the first right ventricle-to-pulmonary artery connection using unvalved conduits made of autologous pericardium in 1964, various right ventricle-to-pulmonary artery conduits have gradually been used in the treatment of various complex CHD. Compared with other materials, valved homograft conduit (VHC) is more consistent with physiological characteristics, better haemodynamics, easy suture and good haemostasis, anti-calcification, anti-infection, and without the need for lifelong anticoagulation, which makes VHC the best material for reconstruction of right ventricular outflow tract. However, due to the shortage of donor sources, other alternative conduits such as polytetrafuoroethylene valved conduits have been developed, and the results are not inferior to VHC in clinical application. The emerging tissue engineering technology is expected to utilise recipient-derived endothelial cells for implantation onto the decellularized VHC or degradable synthetic materials in order to construct a recipient-specific tissue-engineered valved conduit. This advancement holds great potential as an ideal biological transplant material and valve replacement for CHD. It will completely solve the problems of immune rejection and the growth of the conduit that cannot adapt to the physical growth of children. This review provides a comprehensive review of the clinical indications for right ventricle-to-pulmonary artery conduits application, optimal timing for surgery, current practices in utilising various types of external conduits, and considerations for re-replacement.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Klinner, W. Indications and operative technic for the correction of fallot’s tetralogy. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 1964; 308: 640644.Google ScholarPubMed
Rastelli, GC, Ongley, PA, Davis, GD, Kirklin, JW. Surgical repair for pulmonary valve atresia with coronary-pulmonary artery fistula: report of case. Mayo Clin Proc 1965; 40: 521527.Google ScholarPubMed
Ross, DN, Somerville, J. Correction of pulmonary atresia with a homograft aortic valve. Lancet 1966; 2: 14461447. DOI: 10.1016/s0140-6736(66)90600-3.CrossRefGoogle ScholarPubMed
Jonas, RA, Freed, MD, Mayer, JJ, Castaneda, AR. Long-term follow-up of patients with synthetic right heart conduits. Circulation 1985; 72: II77II83.Google ScholarPubMed
Quintessenza, JA, Jacobs, JP, Chai, PJ, Morell, VO, Lindberg, H. Polytetrafluoroethylene bicuspid pulmonary valve implantation: experience with 126 patients. World J Pediatr Congenit Heart Surg 2010; 1: 2027. DOI: 10.1177/2150135110361509.CrossRefGoogle ScholarPubMed
Frigiola, A, Tsang, V, Nordmeyer, J, et al. Current approaches to pulmonary regurgitation⋆⋆⋆. Eur J Cardiothorac Surg 2008; 34: 576581. DOI: 10.1016/j.ejcts.2008.04.046.CrossRefGoogle ScholarPubMed
Gerestein, CG, Takkenberg, JJ, Oei, FB, et al. Right ventricular outflow tract reconstruction with an allograft conduit. Ann Thorac Surg 2001; 71: 911917. DOI: 10.1016/s0003-4975(00)02440-1.CrossRefGoogle ScholarPubMed
Sharifulin, R, Bogachev-Prokophiev, A, Demin, I, et al. Right ventricular outflow tract reconstruction using a polytetrafluoroethylene conduit in ross patients. Eur J Cardiothorac Surg 2018; 54: 427433. DOI: 10.1093/ejcts/ezy128.CrossRefGoogle ScholarPubMed
Zhang, H, Ye, M, Chen, G, Jia, B. 0.1 mm eptfe versus autologous pericardium for hand-sewn trileaflet valved conduit: a comparative study. J Artif Organs 2019; 22: 207213. DOI: 10.1007/s10047-019-01107-5.CrossRefGoogle ScholarPubMed
Yaojun, D, Dong, Z, Zhongdong, H, Jun, Y, Shoujun, L, Keming, Y. Application status of right ventricular outflow tract reconstruction with valved homograft conduits: a single-center 13 years experience. Chin J Clin Thorac Cardiovasc Surg 2023; 30: 10191024.Google Scholar
O’Brien, MF, Stafford, G, Gardner, M, et al. The viable cryopreserved allograft aortic valve. J Card Surg 1987; 2: 153167. DOI: 10.1111/jocs.1987.2.1s.153.CrossRefGoogle ScholarPubMed
Niwaya, K, Knott-Craig, CJ, Lane, MM, et al. Cryopreserved homograft valves in the pulmonary position: risk analysis for intermediate-term failure. J Thorac Cardiovasc Surg 1999; 117: 141147. DOI: 10.1016/s0022-5223(99)70479-4.CrossRefGoogle ScholarPubMed
Tweddell, JS, Pelech, AN, Frommelt, PC, et al. Factors affecting longevity of homograft valves used in right ventricular outflow tract reconstruction for congenital heart disease. Circulation 2000; 102: III-130III-135. DOI: 10.1161/01.cir.102.suppl_3.iii-130.CrossRefGoogle ScholarPubMed
Oeser, C, Uyanik-Uenal, K, Kocher, A, Laufer, G, Andreas, M. Long-term performance of pulmonary homografts after the ross procedure: experience up to 25 years. Eur J Cardiothorac Surg 2019; 55: 876884. DOI: 10.1093/ejcts/ezy372.CrossRefGoogle ScholarPubMed
Fernandez-Carbonell, A, Rodriguez-Guerrero, E, Merino-Cejas, C, et al. Predictive factors for pulmonary homograft dysfunction after ross surgery: a 20-year follow-up. Ann Thorac Surg 2021; 111: 13381344. DOI: 10.1016/j.athoracsur.2020.06.032.CrossRefGoogle ScholarPubMed
Lenzi, AW, Olandoski, M, Ferreira, WS, et al. Dysfunction of the pulmonary homograft used in the reconstruction of the right ventricle exit tract. Arq Bras Cardiol 2011; 96: 27.CrossRefGoogle ScholarPubMed
Kalfa, D, Mace, L, Metras, D, Kreitmann, B. How to choose the best available homograft to reconstruct the right ventricular outflow tract. J Thorac Cardiovasc Surg 2011; 142: 950953. DOI: 10.1016/j.jtcvs.2011.03.005.CrossRefGoogle ScholarPubMed
Kalfa, DM, Loundou, A, Nouaille, DGY, et al. Pulmonary position cryopreserved homograft in non-ross patients: how to improve the results? Eur J Cardiothorac Surg 2012; 42: 981987. DOI: 10.1093/ejcts/ezs248.CrossRefGoogle ScholarPubMed
Yaojun, D, Dong, Z, Zhongdong, H, Jun, Y, Shoujun, L, Keming, Y. The long-term durability of valved homograft conduit in right ventricular outflow tract reconstruction after Ross surgery and non-Ross surgery. Chin J Clin Thorac Cardiovasc Surg 2023; 30: 884889.Google Scholar
Selamet, TE, Gersony, WM, Altmann, K, et al. Pulmonary position cryopreserved homografts: durability in pediatric ross and non-ross patients. J Thorac Cardiovasc Surg 2005; 130: 282286. DOI: 10.1016/j.jtcvs.2005.04.003.CrossRefGoogle Scholar
Boethig, D, Goerler, H, Westhoff-Bleck, M, et al. Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur J Cardiothorac Surg 2007; 32: 133142. DOI: 10.1016/j.ejcts.2007.02.025.CrossRefGoogle ScholarPubMed
Xiao-song, H, Ke-ming, Y, Shou-jun, L, Yue, T, Ju-bo, L. Mid-term outcomes for the application of homograft valve conduits in right ventricular outflow reconstruction in patients with congenital heart disease. Chin Circ J 2016; 31: 385388.Google Scholar
Herrmann, JL, Brown, JW. Seven decades of valved right ventricular outflow tract reconstruction: the most common heart procedure in children. J Thorac Cardiovasc Surg 2020; 160: 12841288. DOI: 10.1016/j.jtcvs.2020.04.137.CrossRefGoogle ScholarPubMed
Forbess, JM, Shah, AS, St, LJ, Jaggers, JJ, Ungerleider, RM. Cryopreserved homografts in the pulmonary position: determinants of durability. Ann Thorac Surg 2001; 71: 5459. DOI: 10.1016/s0003-4975(00)01788-4.CrossRefGoogle ScholarPubMed
Sinha, P, Moulick, A, Jonas, RA. Femoral vein homograft for neoaortic reconstruction in norwood stage 1 operation. Ann Thorac Surg 2009; 87: 13091310. DOI: 10.1016/j.athoracsur.2008.09.007.CrossRefGoogle ScholarPubMed
Sinha, P, Talwar, S, Moulick, A, Jonas, R. Right ventricular outflow tract reconstruction using a valved femoral vein homograft. J Thorac Cardiovasc Surg 2010; 139: 226228. DOI: 10.1016/j.jtcvs.2008.10.018.CrossRefGoogle ScholarPubMed
Christenson, JT, Sierra, J, Colina, MN, Jolou, J, Beghetti, M, Kalangos, A. Homografts and xenografts for right ventricular outflow tract reconstruction: long-term results. Ann Thorac Surg 2010; 90: 12871293. DOI: 10.1016/j.athoracsur.2010.06.078.CrossRefGoogle ScholarPubMed
Urso, S, Rega, F, Meuris, B, et al. The contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg 2011; 40: 603609. DOI: 10.1016/j.ejcts.2010.11.081.Google ScholarPubMed
Hirai, K, Baba, K, Goto, T, et al. Outcomes of right ventricular outflow tract reconstruction in children: retrospective comparison between bovine jugular vein and expanded polytetrafluoroethylene conduits. Pediatr Cardiol 2021; 42: 100108. DOI: 10.1007/s00246-020-02458-0.CrossRefGoogle ScholarPubMed
Zhang, HF, Chen, G, Ye, M, Yan, XG, Tao, QL, Jia, B. Mid- to long-term outcomes of bovine jugular vein conduit implantation in chinese children. J Thorac Dis 2017; 9: 12341239. DOI: 10.21037/jtd.2017.05.02.CrossRefGoogle ScholarPubMed
Bowman, FJ, Hancock, WD, Malm, JR. A valve-containing dacron prosthesis. Its use in restoring pulmonary artery-right ventricular continuity. Arch Surg 1973; 107: 724728. DOI: 10.1001/archsurg.1973.01350230076015.CrossRefGoogle ScholarPubMed
Carpentier, A, Lemaigre, G, Robert, L, Carpentier, S, Dubost, C. Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg 1969; 58: 467483.CrossRefGoogle ScholarPubMed
Bailey, WW, Kirklin, JW, Bargeron, LJ, Pacifico, AD, Kouchoukos, NT. Late results with synthetic valved external conduits from venous ventricle to pulmonary arteries. Circulation 1977; 56: II73–II79.Google Scholar
Backer, CL, Mavroudis Constantine. Pediatric Cardiac Surgery. Blackewell, London, 2013.Google Scholar
Dearani, JA, Danielson, GK, Puga, FJ, et al. Late follow-up of 1095 patients undergoing operation for complex congenital heart disease utilizing pulmonary ventricle to pulmonary artery conduits. Ann Thorac Surg 2003; 75: 399411. DOI: 10.1016/s0003-4975(02)04547-2.CrossRefGoogle ScholarPubMed
Gottlieb, D, Kunal, T, Emani, S, et al. In vivo monitoring of function of autologous engineered pulmonary valve. J Thorac Cardiovasc Surg 2010; 139: 723731. DOI: 10.1016/j.jtcvs.2009.11.006.CrossRefGoogle ScholarPubMed
Fujita, S, Yamagishi, M, Kanda, K, et al. Histology and mechanics of in vivo tissue-engineered vascular graft for children. Ann Thorac Surg 2020; 110: 10501054. DOI: 10.1016/j.athoracsur.2020.03.069.CrossRefGoogle ScholarPubMed
Nakatsuji, H, Yamagishi, M, Maeda, Y, et al. Midterm results of pulmonary artery plasty with in vivo tissue-engineered vascular grafts. Interact Cardiovasc Thorac Surg 2021; 32: 956959. DOI: 10.1093/icvts/ivab019.CrossRefGoogle ScholarPubMed
Francois, K, De Groote, K, Vandekerckhove, K, et al. Small-sized conduits in the right ventricular outflow tract in young children: bicuspidalized homografts are a good alternative to standard conduits. Eur J Cardiothorac Surg 2018; 53: 409415. DOI: 10.1093/ejcts/ezx354.CrossRefGoogle ScholarPubMed
Bobylev, D, Horke, A, Boethig, D, et al. 5-year results from the prospective European multi-centre study on decellularized homografts for pulmonary valve replacement espoir trial and ESPOIR registry data. Eur J Cardiothorac Surg 2022; 62: 365–369. DOI: 10.1093/ejcts/ezac219.Google Scholar
Sarikouch, S, Horke, A, Tudorache, I, et al. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg 2016; 50: 281290. DOI: 10.1093/ejcts/ezw050.CrossRefGoogle ScholarPubMed
Ruzmetov, M, Geiss, DM, Shah, JJ, et al. Does the homograft for RVOT reconstruction in ross: patients fare better than for non-ross patients? A single-center experience. J Heart Valve Dis 2015; 24: 478483.Google ScholarPubMed
Stark, J. The use of valved conduits in pediatric cardiac surgery. Pediatr Cardiol 1998; 19: 282288.CrossRefGoogle ScholarPubMed