Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T05:44:23.240Z Has data issue: false hasContentIssue false

Yamabe Solitons and Ricci Solitons on Almost co-Kähler Manifolds

Published online by Cambridge University Press:  07 May 2019

Young Jin Suh
Affiliation:
Department of Mathematics, Kyungpook National University, Taegu 702-701, South Korea Email: [email protected]
Uday Chand De
Affiliation:
Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata - 700019, West Bengal, India Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The object of this paper is to study Yamabe solitons on almost co-Kähler manifolds as well as on $(k,\unicode[STIX]{x1D707})$-almost co-Kähler manifolds. We also study Ricci solitons on $(k,\unicode[STIX]{x1D707})$-almost co-Kähler manifolds.

Type
Article
Copyright
© Canadian Mathematical Society 2019 

Footnotes

The first author was supported by the National Research Foundation of Korea, Grant Proj. No. NRF-2018-R1D1A1B-05040381.

References

Bejan, C. L. and Crasmareanu, M., Ricci solitons in manifolds with quasi-constant curvature . Publ. Math. Debrecen 78(2011), 235243. https://doi.org/10.5486/PMD.2011.4797.Google Scholar
Blair, D. E., Contact manifold in Riemannian geometry . Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.Google Scholar
Blair, D. E., Riemannian geometry on contact and symplectic manifolds . Progress in Mathematics, 203, Birkhäuser Boston, Inc, Boston, MA, 2002. https://doi.org/10.1007/978-1-4757-3604-5.Google Scholar
Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds . Bull. Malays. Math. Sci. Soc. 33(2010), 361368.Google Scholar
Cappelletti-Montano, B., Nicola, A. D., and Yudin, I., A survey on cosymplectic geometry . Rev. Math. Phys. 25(2013), 1343002 (2013). https://doi.org/10.1142/S0129055X13430022.Google Scholar
Cappelletti-Montano, B. and Pastore, A. M., Einstein-like conditions and cosymplectic geometry . J. Adv. Math. Stud. 3(2010), 2740.Google Scholar
Carriazo, A. and Martin-Molina, V., Almost cosymplectic and almost Kenmotsu (k, 𝜇, 𝜈)-spaces . Mediterr. J. Math. 10(2013), 15511571. https://doi.org/10.1007/s00009-013-0246-4.Google Scholar
Chave, T. and Valent, G., Quasi-Einstein metrics and their renoirmalizability properties . Helv. Phys. Acta. 69(1996), 344347.Google Scholar
Chave, T. and Valent, G., On a class of compact and non-compact quasi-Einstein metrics and their renoirmalizability properties . Nuclear Phys. B. 478(1996), 758778. https://doi.org/10.1016/0550-3213(96)00341-0.Google Scholar
Chinea, D., de Leon, M., and Marrero, J. C., Topology of cosymplectic manifolds . J. Math. Pures Appl. 72(1993), 567591.Google Scholar
Cho, J. T., Ricci solitons on almost contact geometry . Proceedings of 17th International workshop on Differential Geometry and the 7th KNUGRG-OCAMI Differential Geometry Workshop [Vol. 17], Natl. Inst. Math. Sci. (NIMS), Taejon, 2013, pp. 8595.Google Scholar
Chow, B. and Knopf, D., The Ricci flow: An introduction . Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.Google Scholar
Chow, B., Lu, P., and Ni, L., Hamilton Ricci flow . Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI; Science Press, Beijing, New York, 2006. https://doi.org/10.1090/gsm/077.Google Scholar
Dacko, P. and Olszak, Z., On almost cosymplectic (k, 𝜇)-space . Banach Center Publ. 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005, pp. 211220. https://doi.org/10.4064/bc69-0-17.Google Scholar
Daskalopoulos, P. and Sesum, N., The classification of locally conformally flat Yamabe solitons . Adv. Math. 240(2013), 346369. https://doi.org/10.1016/j.aim.2013.03.011.Google Scholar
Derdzinski, A., A., Compact Ricci solitons . (Polish) Wiad Mat. 48(2012), no. 1, 132.Google Scholar
Deshmukh, S., Jacobi-type vector fields on Ricci solitons . Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(2012), 4150.Google Scholar
Endo, H., Non-existence of almost cosymplectic manifolds satisfying a certain condition . Tensor (N. S.) 63(2002), 272284.Google Scholar
Hamilton, R. S., The Ricci flow on surfaces . In: Mathematics and general relativity , Contemp. Math., 71, American Mathematica Society, Providence, RI, 1988, pp. 237262. https://doi.org/10.1090/conm/071/954419.Google Scholar
Hsu, S.-Y., A note on compact gradient Yamabe solitons . J. Math. Anal. Appl. 388(2012), 725726. https://doi.org/10.1016/j.jmaa.2011.09.062.Google Scholar
Ivey, T., Ricci solitons on compact 3-manifolds . Differential Geom. Appl. 3(1993), 301307. https://doi.org/10.1016/0926-2245(93)90008-O.Google Scholar
Jun, J. B. and Kim, U. K., On 3-dimentional almost contact metric manifold . Kyungpook Math. J. 34(1994), 293301.Google Scholar
Li, H., H., Topology of co-symplectic/co-Kähler manifolds . Asian J. Math. 12(2008), 527543. https://doi.org/10.4310/AJM.2008.v12.n4.a7.Google Scholar
Marrero, J. C. and Padron, E., New examples of compact cosymplectic solvmanifolds . Arch. Math. (Brno) 34(1998), 337345.Google Scholar
Olszak, Z., On almost cosymplectic manifolds . Kodai Math. J. 4(1981), 239250.Google Scholar
Olszak, Z., On almost cosymplectic manifolds with Kählerian leaves . Tensor (N. S.) 46(1987), 117124.Google Scholar
H. Oztürk, H., N. Aktan, C. and Murathan, Almost 𝛼-cosymplectic (k, 𝜇, 𝜈)-spaces. 2010. arxiv:1007.0527v1.Google Scholar
Perelman, G., The entropy formula for the Ricci flow and its geometric applications. arxiv:Math.DG/0211159.Google Scholar
Sharma, R., A 3-dimensional Sasakian metric as a Yamabe Soliton . Int. J. Geom. Methods Mod. Phys. 9(2012), 1220003. https://doi.org/10.1142/S0219887812200034.Google Scholar
Wang, Y., Yamabe solitons in three dimensional Kenmotsu manifolds . Bull. Belg. Math. Soc. Stenvin 23(2016), 345355.Google Scholar
Wang, Y., A generalization of Goldberg conjecture for co-Kähler manifolds . Mediterr. J. Math. 13(2016), 26792690.Google Scholar
Yano, K., Integral Formulas in Riemannian geometry . Pure and Applied Mathematics, 1, Marcel Dekker, New York, 1970.Google Scholar