Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T16:48:30.906Z Has data issue: false hasContentIssue false

Value Distribution of the Riemann Zeta Function

Published online by Cambridge University Press:  20 November 2018

I. Ascah-Coallier
Affiliation:
Département de Mathématiques et de Statistique, Université de Montréal, Montréal, QC H3C 3J7. e-mail: [email protected], e-mail: [email protected]
P. M. Gauthier
Affiliation:
Département de Mathématiques et de Statistique, Université de Montréal, Montréal, QC H3C 3J7. e-mail: [email protected], e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we give a new short proof of the fact, recently discovered by Ye, that all (finite) values are equidistributed by the Riemann zeta function.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2008

References

[1] Berndt, B. C., The number of zeros for ζ(k)(s), J. Lond. Math. Soc. 2(1970), 577580.Google Scholar
[2] Liao, L. and Yang, C-C., On some new properties of the gamma function and the Riemann zeta function. Math. Nachr. 257(2003), 5966.Google Scholar
[3] Liao, L. and Ye, Zhuan, The Lang-type of the Riemann zeta-function. Complex Var. Elliptic Equ. 51(2006), no. 3, 239241.Google Scholar
[4] Nevanlinna, R., Analytic Functions. Translated from the second German edition. Die Grundlehren der mathematischen Wissenschaften 162, Springer-Verlag, New York, 1970.Google Scholar
[5] Verma, D. P. and Kaur, A., Zero-free regions of derivatives of Riemann zeta function. Proc. Indian Acad. Sci., Math. Sci. 91(1982), no. 3, 217221.Google Scholar
[6] Ye, Z., The Nevanlinna functions of the Riemann zeta-function. J. Math. Anal. Appl. 233(1999), no. 1, 425435.Google Scholar