Published online by Cambridge University Press: 20 November 2018
A. Grothendieck has shown that if the space C(X) is a Banach dual then X is hyperstonean; moreover, the predual of C(X) is strongly unique. In this article we give a vector analogue of Grothendieck's result. We show that if E* is a reflexive Banach space and C(X, (E*, σ*)) denotes the space of continuous functions on X to E* when E* is provided with its weak* (= weak) topology then the full content of Grothendieck's theorem for C(X) can be established for C(X,(E*,σ*)). This improves a result previously obtained for the case in which E* is Hilbert space.