Article contents
Unimodular Roots of Special Littlewood Polynomials
Published online by Cambridge University Press: 20 November 2018
Abstract
We call $\alpha \left( z \right)={{a}_{0}}+{{a}_{1}}z+\cdot \cdot \cdot +{{a}_{n-1}}{{z}^{n-1}}$ a Littlewood polynomial if
${{a}_{j}}=\pm 1$ for all
$j$. We call
$\alpha \left( z \right)$ self-reciprocal if
$\alpha \left( z \right)={{z}^{n-1}}\alpha \left( 1/z \right)$, and call
$\alpha \left( z \right)$ skewsymmetric if
$n=2m+1$ and
${{a}_{m+j}}={{\left( -1 \right)}^{j}}{{a}_{m-j}}$ for all
$j$. It has been observed that Littlewood polynomials with particularly high minimum modulus on the unit circle in
$\mathbb{C}$ tend to be skewsymmetric. In this paper, we prove that a skewsymmetric Littlewood polynomial cannot have any zeros on the unit circle, as well as providing a new proof of the known result that a self-reciprocal Littlewood polynomial must have a zero on the unit circle.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2006
References
- 7
- Cited by