No CrossRef data available.
Article contents
Uniformization and Steinness
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
It is shown that the unit ball in ${{\mathbb{C}}^{n}}$ is the only complexmanifold that can universally cover both Stein and non-Stein strictly pseudoconvex domains.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2018
References
[1]
Chirka, E. M., Complex analytic sets. Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers, Dordrecht, 1989. http://dx.doi.Org/10.1007/978-94-009-2366-9Google Scholar
[2]
Goldman, W. M., Kapovich, M., and Leeb, B., Complex hyperbolic manifolds homotopy equivalent to a Riemann surface. Comm. Anal. Geom. 9(2001), 61–95. http://dx.doi.org/10.4310/CAC.2001.v9.n1.a3Google Scholar
[3]
Forstneric, F., A complex surface admitting a strongly plurisubharmonic function but no holomorphic functions. J. Geom. Anal. 25(2015), 329–335. http://dx.doi.org/10.1007/s12220-013-9430-9Google Scholar
[4]
Nemirovski, S. and Shafikov, R., Uniformization of strictly pseudoconvex domains. I. Izv. Math. 69(2005), 1189–1202. http://dx.doi.org/10.1070/IM2005v069n06ABEH002295Google Scholar
[5]
Nemirovski, S. and Shafikov, R., Uniformization of strictly pseudoconvex domains. II. Izv. Math. 69(2005), 1203–1210. http://dx.doi.org/10.1070/IM2005v069n06ABEH002296Google Scholar
[6]
Rosay, J.-P., Sur une caracterisation de la boule parmi les domaines de C” par son groupe d'automorphismes. Ann. Inst. Fourier (Grenoble) 29(1979), ix, 91–97.Google Scholar
[7]
Wong, B., Characterization ofthe unit ball in C” by its automorphism group. Invent. Math. 41(1977), 253–257. http://dx.doi.org/10.1007/BF01403050Google Scholar
You have
Access